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1 In the context of this algorithm, the
computational problem being solved
is typically called Sparsest Cut. We will
refer to this problem as Min Expansion
in order to be consistent with earlier
lectures.

2 The treatment of expansion here
also works for non-regular graph.
We assume regularity in order to be
consistent with earlier definitions in
the context of Cheeger’s inequality and
degree-2 sum-of-squares.

Arora–Rao–Vazirani Approximation for Expansion

In this lecture, we consider the problem of finding a set with smallest
possible expansion1 in a given graph. Earlier we saw that degree-2
pseudo-distributions allow us to achieve non-trivial approximation
guarantee, which turns out to be closely related to Cheeger’s in-
equality from spectral graph theory (see lecture 2). We also showed
that this guarantee is tight for degree-2 pseudo-distributions (see
lecture 3). In this lecture, we investigate the question if higher-degree
pseudo-distributions allow us to achieve better approximation guar-
antee. An indication that higher degree might indeed help is that
certain linear programming approaches, that are captured by higher-
degree pseudo-distributions, achieve approximation guarantees for
expansion that are better than those from Cheeger’s inequality in
some range of parameters (Leighton and Rao [1988]) . (In particular,
those linear programming approaches certify tight lower bounds
on the expansion of cycle graphs, for which no good degree-2 sos
certificates exist.)

We will show that degree-4 pseudo-distributions achieve approxi-
mation guarantees for expansion (Arora et al. [2004]) that for a large
range of parameters are significantly stronger than both the guaran-
tees of degree-2 pseudo-distributions and the guarantees of previous
linear programming approaches.

Our exposition (especially the proof of the “structure theorem”)
differs significantly from others in the literature. However, it borrows
heavily from lectures notes of Rothvoss [2016].

Pseudo-distributions for expansion

Let G be a d-regular graph with vertex set [n].2 Let fG : {0, 1} → R be
the function that outputs for every vector x ∈ {0, 1}n the number of
edges fG(x) cut by x (viewed as a bipartition of the vertex set),

fG(x) = ∑
{i,j}∈E(G)

(xi − xj)
2 . (1)

We identify the vector x ∈ {0, 1}n with the subset S = {i ∈ [n] | xi =

1} indicated by x. For every i, j ∈ [n], the function (xi − xj)
2 indicates

whether i and j are on different sides of the bipartition corresponding
to x. Recall the expansion of G,

ϕ(G) = min
x∈{0,1}n

fG(x)
d
n |x| · (n− |x|)

. (2)

lec02-2_cheeger.html
lec03-1_lowerbound_maxcut.html
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3 The actual proof requires a small case
distinction here which we are going to
ignore for this high-level discussion.

Here, |x| = ∑n
i=1 xi is the size of the set indicated by x.

Note that actual probability distributions µ : {0, 1}n → R≥0 satisfy
Eµ fG ≥ ϕ(G) · Eµ(x)

d
n · |x|(n − |x|) and equality is achieved by

distributions supported on sets with minimum expansion. If we
consider degree-4 pseudo-distributions, we can find in polynomial
time one such that the ratio of Ẽµ fG and Ẽµ(x)

d
n |x|(n − |x|) is as

small as possible—certainly no more than ϕ(G). The following
theorem shows that this ratio can never be much smaller than ϕ(G)

and that we can extract from the pseudo-distribution a set with small
expansion at most ϕ(G) ·O(

√
log n).

1. Theorem (Arora–Rao–Vazirani approximation for Min Expan-
sion). Let G be a d-regular graph with vertex set [n] and let µ : {0, 1}n →
R be a degree-4 pseudo-distribution. Then,

ϕ(G) ≤ O
(√

log n
)
·

Ẽµ fG

Ẽµ(x)
d
n |x| · (n− |x|)

. (3)

Furthermore, there exists a polynomial-time algorithm that given G and µ

finds a vector x ∈ {0, 1}n witnessing this bound on ϕ(G).

A birds-eye view of the proof

The proof of Theorem 1 consists of several part. We describe each of
them at a high level and explain how they fit together.

The first component is an algorithm called region growing. Given
two subsets A, B ⊆ [n] this algorithm tries to find the best cut of the
graph between A and B guided by the pseudo-distribution µ. As we
will see, this algorithm achieves a O(1/∆)-approximation (compared
to the pseudo-distribution) if the sets A, B are ∆-separated in the sense
that |A|, |B| ≥ Ω(n) and Eµ(x)(xi − xj)

2 ≥ ∆ for every i ∈ A and
j ∈ B.

The second component is a structure theorem for pseudo-
distributions that shows that for some ∆ ≥ Ω(1)/

√
log n such

∆-separated sets always exist.3

To prove this structure theorem we apply the quadratic sam-
pling lemma (from lecture 1) in order to obtain Gaussian vari-
ables X1, . . . , Xn with the same first two moments as the pseudo-
distribution. A natural first attempt to construct separated sets from
those variables is to choose A to be all vertices i ∈ [n] such that Xi

is significantly below its mean, say Xi ≤ E Xi − 1 and to choose B
to be all vertices j ∈ [n] such that Xj is significant above its mean,

lec01-2_definitions.html
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say Xj ≥ E Xj + 1. Indeed, this construction ensures that A and B
are ∆-separated for some ∆ ≥ Ω(1)/ log n (which in turn gives an
O(log n) approximation).

To improve over this first attempt, we post-process the sets A and
B by iteratively removing pairs i ∈ A and j ∈ B that violate the
separation condition, i.e., E(Xi − Xj)

2 ≤ ∆. The heart of the proof is to
upper bound the number of disjoint pairs of this form. We will show
that its expectation is at most O(n) · (∆ ·

√
log n)Ω(1). It follows that if

we choose ∆ = c
√

log n for a sufficiently small constant c > 0, then
only a small fraction of vertices are removed in the post-processing
phase in expectation.

To upper bound their expected number, we relate the above dis-
joint pairs to maxima of Gaussian processes defined in terms of the
variables X1, . . . , Xn. A crucial ingredient is an upper bound on the
variance (and concentration) of the maximum of a Gaussian process
and the fact that the Gaussian variables X1, . . . , Xn satisfy squared tri-
angle inequalities E(Xi − Xj)

2 ≤ E(Xi − Xk)
2 + E(Xk − Xj)

2 (because
the pseudo-distribution µ satisfies this inequality and X1, . . . , Xn have
the same first two moments as µ).

Region growing

Let G be a d-regular graph with vertex set [n]. Let µ : {0, 1}n → R

be a degree-4 pseudo-distribution. Let d(i, j) = Ẽµ(x)(xi − xj)
2

be the probability under µ that i and j are on different sides of the
bipartition. For a subset S ⊆ [n], we let d(i, S) = mins∈S d(i, s). Since
the inequality (xi − xj)

2 + (xj − xk)
2 ≥ (xi − xk)

2 holds over the
hypercube for all i, j, k ∈ [n] and this inequality as a deg-4 sos proof,
we have the following triangle inequality for all i, j, k ∈ [n]

d(i, j) + d(j, k) ≥ d(i, k) . (4)

The following lemma is the main tool for extracting a set with
small expansion out of a degree-4 pseudo-distribution.

2. Lemma (Region growing). Suppose for ∆ > 0 there exists a subset
A ⊆ [n] such that |A| ·∑n

i=1 d(i, A) ≥ ∆ ·∑n
i,j=1 d(i, j). Then,

ϕ(G) ≤ 1/∆ ·
Ẽµ fG

Ẽµ(x)
d
n |x|(n− |x|)

. (5)

.

Furthermore, one of the sets At = {i ∈ [n] | d(i, A) ≤ t} for t ≥ 0
witnesses this bound on the expansion.
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4 If the graph has a sparsest cut such
that the smaller side has size at least
0.2n, we can require this inequality for
the pseudo-distribution without loss
of generality. Furthermore, it turns
out that even the general case can be
reduced to this special case. We present
this reduction at the end of these notes.

Proof. Consider the following distribution µ′ over the hypercube:

• choose t uniformly at random in the interval [0, 1]

• output the vector x′ ∈ {0, 1}n with x′i = 1 if and only if d(i, A) ≤ t.

Then, every pair i, j ∈ [n] with d(i, A) ≤ d(j, A) satisfies

E
µ′(x′)

(x′i − x′j)
2 = P

t∈[0,1]
{d(i, A) ≤ t ≤ d(j, A)}

= |d(i, A)− d(j, A)|
(6)

By the triangle inequality Eq. (4), d(i, A)− d(j, A) ≤ d(i, j). Therefore,
Eµ′ fG ≤ Ẽµ fG.

At the same time, since |x′| ≥ |A| and Pµ′(x)
{

x′i = 0
}

=

Pt∈[0,1]{t < d(i, A)} = d(i, A),

E
µ′(x′)
|x′|(n− |x′|) ≥ |A| ·

n

∑
i=1

d(i, A)

≥ ∆ · ∑
i,j∈[n]

d(i, j)

= ∆ · Ẽ
µ(x)
|x| · (n− |x|) .

(7)

It follows that the expansion of G satisfies

ϕ(G) ≤
Eµ′ fG

Eµ′(x′)|x′|(n− |x′|)
≤ 1

∆
·

Ẽµ fG

Ẽµ(x)|x|(n− |x|)
. (8)

Furthermore, there exists a vector x′ ∈ {0, 1}n in the support of µ′

that witnesses this bound on the expansion.

It remains to show that we can always find a subset A as above
for ∆ ≥ Ω(1/

√
log n). For simplicity, we first focus on the following

special case, 4

∑
i,j∈[n]

d(i, j) ≥ 0.1 · n2 . (9)

In this special case, we show that for some ∆ ≥ Ω(1/
√

log n) there
exist sets A, B ⊆ [n] with |A|, |B| ≥ Ω(n) such that d(i, j) ≥ ∆ for
all i ∈ A and j ∈ B. Indeed for this choice of A, the condition of the
region growing lemma is satisfied,

|A| ·
n

∑
i=1

d(i, A) ≥ |A| · |B| · ∆ ≥ Ω(∆ · n2) ≥ Ω(∆) · ∑
i,j∈[n]

d(i, j) . (10)

By Lemma 2, we obtain a O(1/∆) ≤ O(
√

log n)-approximation for
the expansion of G.
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5 The definition of expansion Eq. (2) is
symmetric in the sense that both x and
its complement 1 − x have the same
value. Therefore, we can symmetrize
the pseudo-distribution in the same
way as for Max Cut.

Structure theorem

The quadratic sampling lemma allows us to translate the task of find-
ing sets A and B as above to a question about n jointly-distributed
Gaussian variables. Without loss of generality we may assume that
Eµ(x) x = 1

2 · 1.5

Let X = (X1, . . . , Xn) be a Gaussian vector that matches the first
two moments of x− 1

2 · 1 under the pseudo-distribution µ. Then, X
satisfies E Xi = 0, E X2

i ≤ 1, and E(Xi − Xj)
2 = d(i, j) for all i, j ∈ [n].

The following theorem about such Gaussian vectors shows that
sets A and B as above exist and that we can find them efficiently.
Together with Lemma 2 this theorem implies Theorem 1 in the
special case that the pseudo-distribution satisfies Eq. (9)

3. Theorem (Structure). Let X = (X1, . . . , Xn) be a centered Gaussian
vector with E X2

i ≤ 1 for all i ∈ [n]. Suppose d(i, j) = E(Xi − Xj)
2 satisfies

the inequalities Eq. (4) and Eq. (9). Then, there exists sets A, B ⊆ [n] with
|A|, |B| ≥ Ω(n) such that

min
i∈A,j∈B

d(i, j) ≥ Ω
(

1/
√

log n
)

. (11)

Furthermore, we can find such sets A and B in polynomial time.

It will useful to rephrase the above theorem in terms of vertex
separators in certain graphs associated with the Gaussian vector X.
For ∆ > 0, let H be the directed graph with vertex set [n] such that

E(H) = {(i, j) ∈ [n]2 | d(i, j) ≤ ∆} . (12)

We say that subsets A, B ⊆ [n] form a vertex separator if no edge of H
goes directly between A and B, i.e., E(H) ∩ A× B = ∅. We say such
a vertex separator is good if |A| · |B| ≥ Ω(n2). With this terminology
in place, we see that in order to prove Theorem 3 it is enough to show
that there exists ∆ ≥ Ω

(
1/
√

log n
)

such that H has a good vertex
separator.

Proof of structure theorem

Let X = (X1, . . . , Xn) be a centered Gaussian vector with E X2
i ≤ 1 for

all i ∈ [n]. Let d(i, j) = E(Xi − Xj)
2 for all i, j ∈ [n]. Suppose that d

satisfies Eq. (4) and Eq. (9). For ∆ > 0, let H be the graph with vertex
set [n] and edge set Eq. (12).

We consider the following randomized algorithm to find vertex
separators for H:
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Figure 1: In this graph, the set of
vertices in the middle is a vertex
separator. Removing this set breaks the
graph into two parts A and B that are
not connected by an edge. If we added,
the red edge to the graph, the set of
vertices in the middle would no longer
be a vertex separator.

1. Choose subsets A0, B0 ⊆ [n] such that

A0 = {i | Xi ≤ −1} and B0 = {j | Xj ≥ 1} . (13)

2. Find a maximal matching M in the edges E(H) ∩ A0 × B0.

3. Output the sets A = A0 \V(M) and B = B0 \V(M).

Note that the objects constructed by the algorithm, in particular
the sets A and B and the matching M, are jointly distributed with the
Gaussian vector X. We emphasize that the edges of the matching M
are directed. In particular, the event (i, j) ∈ E implies that Xj − Xi ≥ 2.

We observe that the output (A, B) of the algorithm forms a vertex
separator in H. Indeed, by the maximality of M, every edge (i, j) ∈
E(H) ∩ A0 × B0 has at least one endpoint in V(M), which means that
(i, j) is not contained in A× B.

We also observe that if we find the maximal matching in step 2 by
greedily passing over the edges in a canonical order independent of
the randomness of X, then for every x ∈ Rn, the matching produced
in the event X = x is the reverse of the matching produced in the
event X = −x. It follows that for every vertex i ∈ [n],

P{i has outgoing edge in M} = P{i has incoming edge in M} . (14)

The following lemma characterizes the success of the above algo-
rithm in terms of the expected size of M.

4. Lemma (Vertex separator or large matching). Either the above
algorithm outputs a good vertex separator for the graph H with probability
Ω(1), or the random matching M produced by the algorithm satisfies
E|M| ≥ Ω(n).
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6 We remark that the lemma only uses
the triangle inequalities Eq. (4) but not
inequality Eq. (9).

7 That means that if we choose ∆ a
sufficiently small constant factor times
1/
√

log n, the algorithm will succeed
in finding a vertex separator for the
corresponding graph H.

Proof. A similar analysis as in the Goemans–Williamson algorithm
for Max Cut shows that there exists an absolute constant c > 0 such
that P{Xi ≤ −1 and Xj ≥ 1} ≥ c · d(i, j) for every i, j ∈ [n]. Thus, by
inequality Eq. (9),

E|A0| · |B0| ≥ 0.1c · n2 . (15)

Therefore,

E|A| · |B| ≥ E|A0| · |B0| − n ·E|M| ≥ 0.01c · n2 − n ·E|M| . (16)

It follows that E|M| ≥ 1
2 · 0.1c ·E|M|. (Otherwise, E|A| · |B| ≥ Ω(n2),

which would means that the algorithm outputs a good separator for
H with probability Ω(1), contradicting the premise of the lemma.)

We will analyze the expected size of the random matching M by
relating it to the maximum of a Gaussian process.6

5. Lemma (Maximum of Gaussian process). The expected maximum of
the Gaussian process {Xj − Xi | i, j ∈ [n]} satisfies

Ω(1)
∆
· (E|M|/n)3 ≤ E max

i,j∈[n]
Xj − Xi ≤

√
2 log n . (17)

Together Lemma 4 and Lemma 5 allow us to prove Theorem 3.

Proof of Theorem 3. We prove the contrapositive: if the above algo-
rithm fails to find a good vertex separator in H, then the distance
parameter ∆ of the graph satisfies ∆ ≥ Ω(1/

√
log n).7 Let M be

the random matching defined by the algorithm. Since the algorithm
fails to find a good vertex separator Lemma 4 gives a lower bound
on the expected size of the matching, E|M|/n ≥ Ω(1). On the
other hand, Lemma 5 allows us to upper bound the same quantity
E|M|/n ≤ O(∆

√
log n)1/3. We conclude ∆ ·

√
log n ≥ Ω(1), which

gives the desired lower bound ∆ ≥ Ω(1)/
√

log n.

It remains to prove Lemma 5. The proof considers the following
family of Gaussian processes and relates their expected maxima in
terms of the expected size of the matching M. For i ∈ [n] and k ∈ N,
let Y(k)

i be the maximum of the Gaussian process {Xj − Xi | j ∈ Hk(i)},

Y(k)
i = max

j∈Hk(i)
Xj − Xi . (18)

Here, Hk(i) denotes the set of vertices that can be reached from i
by at most k steps in the graph H. Define the following potential
function,

Φ(k) =
n

∑
i=1

E Y(k)
i . (19)
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8 We remark that the proof of this
lemma neither uses the triangle in-
equalities Eq. (4) nor the inequality
Eq. (9).

9 In contrast, the expectation of the
maximum typically depends also on the
number of variables in the collection.

10 See this book chapter by Pollard for
different proofs of this concentration
inequality.

Note that Φ(k) allows us to lower bound E maxi,j∈[n] Xj − Xi because
Φ(k)/n ≤ E maxi,j∈[n] Xj − Xi.

The following lemma is the key ingredient for the proof of
Lemma 5.8

6. Lemma (chaining). For every k ∈N,

Φ(k+ 1) ≥ Φ(k)+E|M| −O(n) · max
i∈[n],j∈Hk+1(i)

(
E(Xi − Xj)

2
)1/2

. (20)

This chaining lemma directly implies Lemma 5.

Proof of Lemma 5. By the triangle inequality Eq. (4), E(Xi−Xj)
2 ≤ k ·∆

for all i ∈ [n] and j ∈ Hk(i). By Lemma 6, it follows that there exists
an absolute constant C ≥ 1 such that for every k ∈ N, Φ(k + 1) ≥
Φ(k) + E|M| − Cn ·

√
k∆ . For all k ≤ k0 = (1/4C2) · (E|M|/n)2/∆,

this inequality simplifies to

Φ(k + 1) ≥ Φ(k) + 1
2 E|M| . (21)

If we unroll this recurrence relation, we obtain the desired lower
bound

E max
i,j∈[n]

Xj−Xi ≥ Φ(k0 + 1)/n ≥ 1
2 k0(E|M|/n) = (1/8C2) · (E|M|/n)3/∆ .

(22)

The proof of Lemma 6 uses the following remarkable fact about
the variance of maxima of Gaussian processes: The variance of the
maximum of a collection of Gaussian variables is bounded by the
maximum variance of a variable in the collection.9

7. Theorem (Variance of maxima of Gaussian processes). Let Z =

(Z1, . . . , Zt) be centered Gaussian variables. Then, the variance of the
maximum of Z1, . . . , Zt is bounded by

V[max{Z1, . . . , Zt}] ≤ O(1) ·max{V[Z1], . . . , V[Zt]} . (23)

The proof of this inequality also shows Gaussian-like concentra-
tion around the mean. In that form it is sometimes called Borell’s
inequality and follows from Gaussian concentration inequalities for
Lipschitz functions (Sudakov and Cirel′son [1974]; Borell [1975]).10

Proof of Lemma 6. The starting point of the proof is the following
inequality among random variables for all (i, j) ∈ E(H),

Y(k+1)
i ≥ Y(k)

j + Xj − Xi . (24)

http://www.stat.yale.edu/~pollard/Books/Mini/Gaussian.pdf
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11 Here, we use the general inequality
|E XY−E X ·E Y| ≤

√
VX ·VY, which

we leave as an exercise to the reader.

The inequality holds because Hk+1(i) ⊇ Hk(j). Hence, if Y(k)
j =

Xh − Xj for some h ∈ Hk(j), then Y(k+1)
i ≥ Xh − Xi = Y(k)

j + Xj − Xi.

Let N ⊆ [n]× [n] be an arbitrary matching of the vertices not in
matching M. Since matching edges (i, j) ∈ M satisfy Xj − Xi ≥ 2, we
can derive the following set of n/2 inequalities,

∀(i, j) ∈ M. Y(k+1)
i ≥ Y(k)

j + 2 and ∀(i, j) ∈ N. 1
2 Y(k+1)

i + 1
2 Y(k+1)

j ≥ 1
2 Y(k)

i + 1
2 Y(k)

j .
(25)

If we sum up these n/2 inequalities, we obtain the inequality

n

∑
i=1

Y(k+1)
i · Li ≥

n

∑
j=1

Y(k)
j · Rj + 2|M| . (26)

Here, Li = 1 if i has an outgoing edge in M, Li = 0 if i has an
incoming edge in M, and Li = 1/2 if i is not matched in M. Similarly,
Rj = 1 if j has an incoming edge in M, Rj = 0 if j has an outgoing
edge in M, and Rj = 1/2 if j is not matched in M. Since every vertex
is equally likely to have an incoming edge and an outgoing edge in
M (see discussion after the description of the algorithm), it follows
that E Li = E Rj = 1/2 for all i, j ∈ [n]. Using a general bound on the
variance of maxima of Gaussian processes,11

∣∣∣E Y(k+1)
i · Li −E Y(k+1)

i ·E Li

∣∣∣ ≤ √V
[
Y(k+1)

i

]
·V[Li] ≤ O(1) · max

j∈Hk+1(i)

(
E(Xi − Xj)

2
)1/2

.

(27)
Similarly,∣∣∣E Y(k)

j · Rj −E Y(k)
j ·E Rj

∣∣∣ ≤ √V
[
Y(k)

j

]
·V[Rj] ≤ O(1) · max

i∈Hk(j)

(
E(Xi − Xj)

2
)1/2

.

(28)
By taking the expectation of inequality Eq. (26) and applying the
above deviation bounds, it follows as desired that

n

∑
i=1

E Y(k+1)
i ≥

n

∑
j=1

E Y(k)
j + 4|M|−O(n) · max

i∈[n],j∈Hk+1(i)

(
E(Xi − Xj)

2
)1/2

.

(29)

Reduction to the well-spread case

We describe now how to prove Theorem 1 in case inequality Eq. (9) is
not satisfied.

Recall the distance d(i, j) = Eµ(x)(xi − xj)
2. Let δ > 0 be the average

distance
δ = 1

n2 ∑
i,j∈[n]

d(i, j) . (30)
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The following lemma shows that if there exists a cluster of radius
significantly smaller than δ that contains a constant fraction of ver-
tices, then the condition of Lemma 2 is satisfied for ∆ ≥ Ω(1) (which
means that we get a O(1)-approximation).

8. Lemma (Heavy cluster). Suppose there exists i ∈ [n] such that A =

{j ∈ [n] | d(i, j) ≤ δ/4} satisfies |A| ≥ Ω(n). Then, |A| ·∑n
j=1 d(j, A) ≥

Ω(1) ·∑i,j∈[n] d(i, j).

Proof. By the triangle inequality,

δ ≤ 1
n2 · ∑

i,j∈[n]
d(i, A) + d(j, A) + δ/2 ≤ δ/2 + 1

n

n

∑
i=1

2d(i, A) . (31)

Thus, |A|∑n
j=1 d(j, A) ≥ n · δ/4 · |A| ≥ Ω(1) · δn2, which is the desired

bound.

The following lemma shows that if the condition of the previous
lemma is not satisfied, then after restricting to a constant fraction of
the vertices there are Gaussian random variables that we can apply
the structure theorem to in order to obtain sets A, B ⊆ [n] with
|A|, |B| ≥ Ω(n) such that d(i, j) ≥ Ω(1/

√
log n) · δ for all i ∈ A and

j ∈ B.

9. Lemma (Heavy cluster or well-spread). Either there exists a vertex
i ∈ [n] that satisfies the condition of Lemma 8 or there exists a subset U ⊆
[n] with |U| ≥ Ω(n) and a centered Gaussian vector Y = (Y1, . . . , Yn)

such that

• E Y2
i ≤ 1 for all i ∈ U,

• ∑i,j∈U E(Yi −Yj)
2 ≥ 0.05,

• there exists α ≥ Ω(δ) such every i, j ∈ U satisfies d(i, j) = α ·E(Yi −
Yj)

2.

Proof. Suppose that no vertex i ∈ [n] satisfies the condition of
Lemma 8. So every i ∈ [n] satisfies |B(i, δ/4)| ≥ 0.1n, where B(i, δ/4)
is the set of vertices j ∈ [n] such that d(i, j) ≤ δ/4. Let k ∈ [n] be such
that ∑n

i=1 d(i, k) ≤ δn. Let U ⊆ [n] be the set of vertices i ∈ [n] such
that d(i, k) ≤ 2δ. By Markov’s inequality, |U| ≥ n/2. Then,

∑
i,j∈U

d(i, j) ≥ ∑
i∈[n]

δ/4 · |U \ B(i, δ/4)| ≥ n · δ/4 · 0.4n = 0.1δn . (32)

By symmetry, we may assume Ẽµ(x) x = 1
2 · 1. Therefore, if we

let X1, . . . , Xn be the Gaussian variables with the same first two
moments as the pseudo-distribution µ. Then, the variables Y1, . . . , Yn

with Yi = (Xi − Xk)/
√

2δ satisfy E Y2
i ≤ 1 for all i ∈ [n], ∑i,j∈U E(Yi −

Yj)
2 ≥ 0.05 and E(Yi −Yj)

2 = d(i, j)/2δ.
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