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Quantum entanglement, sum of squares, and the log rank con-
jecture.

Note: These are very rough notes (essentially copied from the intro-
duction of the corresponding paper). A better version should be up
shortly, but in the meantime, reading the paper and looking at the
lecture video is probably preferable.

Entanglement is one of the more mysterious and subtle phenomena
of quantum mechanics. The formal definition is below Definition 2,
but roughly speaking, a quantum state ρ on two systems A and B
is entangled if a quantum measurement of one system can effect the
other system. A non-entangled state is called separable. This type
of “spooky interaction at a distance” is responsible for many of the
more counter-intuitive features of quantum mechanics. Entanglement
is also used by all algorithms for quantum computers that obtain
speedups over the best known classical algorithms, and it may be
necessary for such speedups ?.91.147902.

One of the ways in which the complexity of entanglement is
manifested is that even given the full description of a quantum
state ρ as a density matrix, there is no known efficient algorithm for
determining whether ρ is entangled or not. Indeed, the best known
algorithms take time which is exponential in the dimension of the
state (which itself is exponential in the number of underlying qubits).
This is in contrast to the classical case, where there is an efficient
algorithm that given a probability distribution µ over a universe
A× B, can check whether or not µ is a product distribution by simply
computing the rank of µ when viewed as a matrix.

Given the inherently probabilistic and noisy setting of quantum
computing, arguably the right question is not to determine entangle-
ment exactly, but rather to distinguish between the case that a state
ρ is separable, and the case that it is ε-far from being separable, in
the sense that there exists some measurement M that accepts ρ with
probability p but accepts every separable state with probability at
most p− ε. This problem is known as the Quantum Separability Problem
with parameter ε. Gharibian ?, improving on Gurvits ?, showed that
this problem is NP hard when ε is inversely polynomial in the dimen-
sion of the state. Harrow and Montanaro Harrow and Montanaro
[2013] showed that, assuming the Exponential Time Hypothesis, there
is no no(log n) time algorithm for this problem for ε which is a small
constant.

A tightly related problem, which is the one we focus on in this
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1 Using the connection between op-
timization and separation oracles in
convex programming, one can convert
a sufficiently good algorithm for the
search variant of one of these problems
to the other. See Harrow and Monta-
naro [2013] (Sec. 4.2) for a thorough
discussion of the relations between
these and many other problems.

2 For more on information on this
problem and its importance, see the
presentations in the recent workshop
http://qma2016.quics.umd.edu/ that
was dedicated to it.

paper, is the Best Separable State (BSS) problem.1 In the BSS problem
the input is a measurementM on a two part system and two num-
bers 1 ≥ c > s ≥ 0 and the goal is to distinguish between the YES
case that there is a separable state thatM accepts with probabil-
ity at least c and the NO case thatM accepts every separable state
with probability at most s. In particular, certifying that a particular
measurementM satisfies the NO case is extremely useful since it
implies thatM can serve as entanglement witness ? (?), in the sense
that achieving acceptance probability withM larger than s certifies
the presence of entanglement in a state. Such entanglement witnesses
are used to certify entanglement in experiments and systems such
as candidate computing devices ?, and so having an efficient way to
certify that they are sound (do not accept separable states) can be
extremely useful.

Similarly to the quantum separability problem, the BSS problem is
NP hard when c− s = 1/poly(n) ? and Harrow and Montanaro Har-
row and Montanaro [2013] (Corollary 13(i)) show that (assuming the
ETH) there is no no(log n) time algorithm for BSS1,1/2. An outstanding
open question is whether the Harrow and Montanaro [2013] result is
tight: whether there is a quasi-polynomial time algorithm for BSSc,s

for some constants 1 ≥ c > s ≥ 0. This question also has a complexity
interpretation. A measurement on a two part system can be thought
of as a verifier (with hardwired input) that interacts with two provers.
Requiring the state to be separable corresponds to stipulating that
the two provers are not entangled. Thus it is not hard to see that an
algorithm for BSSc,s corresponds to an algorithm for deciding all lan-
guages in the complexity class QMA(2) of two prover quantum Merlin
Arthur systems with corresponding completeness and soundness
parameters c and s respectively. In particular a quasi-polynomial time
algorithm for BSS0.99,0.5 would imply that QMA(2) ⊆ EXP, resolving
a longstanding problem in quantum complexity.2

In 2004, Doherty, Parrilo and Spedialieri Doherty et al. [2004]
proposed an algorithm for the BSS problem based on the Sum of
Squares semidefinite programming hierarchy ? (Lasserre [2001]). It is
not known whether this algorithm can solve the BSSc,s problem (for
constants c > s) in quasi-polynomial time. However , Christandl and
Yard ?.1993683 showed that it runs in quasi-polynomial time when
the measurementM is restricted to a special class of measurements
known as one-way local operations and classical communications (1-
LOCC). and Harrow Brandão and Harrow [2015] showed that similar
performance for these types of measurements can be achieved by an
algorithm based on searching on an appropriately defined ε-net.

http://qma2016.quics.umd.edu/
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3 For a k × m matrix A, we denote by
‖A‖F its Frobenius norm, defined as√

∑i,j |Ai,j|2 = Tr(AA∗)1/2, which
is the same as taking the `2 norm of
the matrix when considered as an
km-dimensional vector.

4 For the sake of accessibility, as well as
to emphasize the connections with non-
quantum questions, we use standard
linear algebra notation in this paper as
opposed to Dirac’s ket notation that is
more common in quantum mechanics.
A vector u is a column vector unless
stated otherwise, and u∗ denotes the
complex conjugate transpose of the
vector u. If u is real, then we denote
its transpose by u>. See the lecture
notes ? for a more complete coverage of
separability and entanglement.

Non quantum motivations

The BSS problem is actually quite natural and well motivated from
classical considerations. As we’ll see in Section [sec:techniques]
below, it turns out that at its core lies the following problem:

1. Definition (Rank one vector in subspace problem). Let F ∈
{R, C} and ε > 0. The ε rank one vector problem over is the task of
distinguishing, given a linear subspaceW ⊆ Fn2

, between the case
that there is a nonzero rank one matrix L ∈ W and the case that
‖L−M‖F ≥ ε‖L‖F for every rank one L and M ∈ W .3

This is arguably a natural problem in its own right. While solving
this problem exactly (i.e., determining if there is a rank one solution
to a set of linear equations) is the same as the NP hard task of solving
quadratic equations, it turns out that we can obtain non-trivial algo-
rithmic results by considering the above notion of approximation.
Indeed, our main result implies an exp(Õ(

√
n)) time algorithm for

this problem for any constant ε > 0 in both the real and complex
cases.

Our results

In this work we give a 2Õ(
√

n) time algorithm for the BSS1,s problem
for every constant s < 1. We now make the necessary definitions and
state our main result.4

2. Definition (Separable states). A quantum state on a system of m
elementary states (e.g., a log m-qubit register) is an m× m complex
Hermitian matrix ρ (known as a density matrix) such that Tr ρ = 1.
A quantum state ρ is pure if it is of the form ρ = ww∗ for some unit
vector w ∈ Cm. Otherwise we say that ρ is mixed. Note that every
mixed state ρ is a convex combination of pure states.

If m = n2, and we identify [m] with [n]× [n] then an m-dimension
pure quantum state ρ = ww∗ ∈ Cm2

is separable if the vector w ∈ Cm

is equal to uv∗ for some u, v ∈ Cn. A general state ρ is separable if
it is a convex combination of separable pure states. That is, ρ =

E(uv∗)(uv∗)∗ where the expectation is taken over a distribution
supported over pairs of unit vectors u, v ∈ Cn. A state that is not
separable is called entangled.

A quantum measurement operator is an m×m complex Hermitian
matrixM such that 0 �M � I. The probability that a measurement
M accepts a state ρ is Tr(ρM).
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3. Theorem (Main result). For every s < 1, there is a 2Õ(
√

n) time
algorithm, based on Õ(

√
n) rounds of the sos hierarchy, that on input an

n2 × n2 measurement operatorM, distinguishes between the following two
cases:

• YES: There exists a separable state ρ ∈ Cn2×n2
such that Tr(ρM) = 1.

• NO: For every separable ρ ∈ Cn2×n2
, Tr(ρM) ≤ s

To our knowledge, this algorithm is the first for this problem that
beats the brute force bound of 2O(n) time for general measurements.

Like the algorithms of Doherty et al. [2004] (?.1993683), our algo-
rithm is based on the sum of squares SDP hierarchy, but we introduce
new techniques for analyzing it that we believe are of independent
interest. As we discuss in Section [sec:conclusions], it is a fascinating
open question to explore whether our techniques can be quantita-
tively strengthened to yield faster algorithms and/or extended for
other problems such as the 2 to 4 norm and small set expansion
problems, that have been shown to be related to the BSS problem
by Barak et al. [2012] (albeit in a different regime of parameters than
the one we deal with in this work). As we remark below, this ques-
tion seems related to other longstanding open questions in computer
science and in particular to the log rank conjecture in communication
complexity Lovász and Saks [1988].

[Imperfect completeness] [rem:perfect-completeness] We state our
results for the case of perfect completeness for simplicity, but all of
the proofs extend to the case of “near perfect completeness” where in
the YES case we replace the condition Tr(ρM) = 1 with the condition
Tr(ρM) = 1− 1

n (see the proof of Theorem [thm:alg-analysis]). It is an
interesting open problem to find out whether our results can extend
to the setting where in the YES case Tr(ρM) = 1− ε for some absolute
constant ε. We conjecture that this is indeed the case.

While the natural setting for quantum information theory is the
complex numbers, much of the power and interest already arises
in the case of the real numbers, which is more natural for the sos
algorithm (though it does have complex-valued generalization).
Hence in this version of this paper we focus solely on the case that all
operators, subspaces, matrices are real. We note that there is a natural
mapping of an n× n complex matrix A + iB (with real n× n matrices
A, B)into the 2n× 2n real matrix

( A B
−B A

)
. Note that a complex rank

one decomposition A + iB = (x + iy)(z + iw)∗ for x, y, z, w ∈ Rn

will translate into a rank two decomposition
(

x y
−y x

)
( z w
−w z )

∗. We can
use a higher dimensional version of our result (see ?? to find such
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5 The original formulation of the log
rank conjecture is that every such
matrix has communication complexity
at most poly log(n), and Nisan and
Wigderson Nisan and Wigderson [1994]
showed that this is equivalent to the
condition that such matrices contains a
monochromatic submatrix of the above
size. Every monochromatic submatrix is
rank one, and every rank one submatrix
of size s× s of a Boolean valued matrix
contains a monochromatic submatrix of
size at least s

2 ×
s
2 .

decompositions, though we defer the complete derivation to the full
version of this paper.

Our techniques

Our algorithm follows a recent paradigm of constructing rounding
algorithms for the sum of squares sdp by considering its solutions
as “pseudo distributions” ?. These can be thought of as capturing
the uncertainty that a computationally bounded solver has about
the optimal solution of the given problem, analogously to the way
that probability distributions model uncertainty in the classical
information-theoretic Bayesian setting.

Somewhat surprisingly, our main tool in analyzing the algorithm
are techniques that arose in proof of the currently best known upper
bound for the log rank conjecture Lovász and Saks [1988]. This conjec-
ture has several equivalent formulations, one of which is that every
N × N matrix A with Boolean (i.e., 0/1) entries and rank at most n,
contains a submatrix of size at least 2−poly log(n)N × 2−poly log(n)N that
is of rank one.5 The best known bound on the log rank conjecture is
by Lovett Lovett [2014] who proved that every such matrix contains a
submatrix of size at least 2−Õ(

√
n)N × 2−Õ(

√
n)N.

Our algorithm works by combining the following observations:

1. Lovett’s proof can be generalized to show that every N × N rank n
real (or complex) matrix A (not necessarily with Boolean entries)
contains a 2−Õ(

√
n)N × 2−Õ(

√
n)N submatrix that is close to rank one

in Frobenius norm.

2. If µ is an actual distribution over solutions to the sos program
for the BSS problem on dimension n, then we can transform µ

into an N × N rank n matrix A = A(µ) such that extracting
an approximate solution from A in time 2Õ(k) can be done if A
contains an approximately rank one submatrix of size at least
2−k N × 2−k N.

3. Moreover all the arguments used to establish steps 1 and 2 above
can be encapsulated in the sum of squares framework, and hence
yield an algorithm that extracts an approximately optimal solution
to the BSS problem from a degree Õ(

√
n) pseudo-distribution µ

that “pretends” to be supported over exact solutions.

Thus, even though in the sos setting there is no actual distribution
µ, and hence no actual matrix A, we can still use structural results
on this “fake” (or “pseudo”) matrix A to obtain an actual rounding
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algorithm. We view this as a demonstration of the power of the
“pseudo distribution” paradigm to help in the discovery of new
algorithms, that might not seem as natural without placing them in
this framework.

Rounding from rank one reweighings

We now give a more detailed (yet still quite informal) overview of
the proof. As mentioned above, we focus on the case that the n2 × n2

measurement matrixM is real (as opposed to complex) valued.

LetW ⊆ Rn2
be the subspace of vectors X such that X>MX =

‖X‖2 (this is a subspace sinceM � I and henceW is the eigenspace
ofM corresponding to the eigenvalue 1). We pretend that the sos
algorithm yields a distribution µ over rank one matrices of the form
X = uv> such that X ∈ W . When designing a rounding algorithm,
we only have access to marginals of µ, of the form Eµ f (X) for some
“simple” function f (e.g., a low degree polynomial). We need to show
that we can use such “simple marginals” of µ to extract a single rank
one matrix u0v>0 that has large projection intoW .

We start with the following simple observation:

4. Lemma. If µ is a distribution over matrices X in a subspaceW ⊆ Rn2

such that the expectation Eµ X is approximately rank one, in the sense that
‖L − Eµ X‖F ≤ ε‖L‖F for some rank one matrix L, then Tr(Mρ) ≥
1− 2ε2 where ρ is the pure separable state ρ = LL>/‖L‖2

F.

Since µ is supported over matrices inW , Eµ X is inW . But this
means that the `2 (i.e., Frobenius) norm distance of L to the subspace
W is at most ε‖L‖F. Since Tr(XX>M) = Tr(X>MX) = ‖X‖2

F for
every X ∈ W , the value Tr(LL>M) will be at least as large as the
norm squared of the projection of L toW .

In particular this means that if we were lucky and the condition of
Lemma 4’s statement occurs, then it would be trivial for us to extract
from the expectation Eµ X (which is a very simple marginal) a rank
one matrix that is close toW , and hence achieves probability 1− ε in
the measurementM. Note that even if every matrix in the support of
µ has unit norm, the matrix L could be of significantly smaller norm.
We just need that there is some dimension-one subspace on which
the cancellations among these matrices are significantly smaller than
the cancellations in the rest of the dimensions.

Of course there is no reason we should be so lucky, but one power
that the marginals give us is the ability to reweigh the original dis-
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tribution µ. In particular, for every “simple” non-negative function
ζ : Rn2 → R+, we can compute the marginal Eµζ

X where µζ is
the distribution over matrices where Pµζ

[X] (or µζ(X) for short) is
proportional to ζ(X)µ(X). A priori in the degree k sos algorithm we
are only able to reweigh using functions ζ that are polynomials of
degree at most k, but for the purposes of this overview, let us pretend
that we can reweigh using any function that is not too “spiky” and
make the following definition:

Let µ be a probability distribution. We say that a probability
distribution µ′ is a k-spike reweighing of µ if ∆KL(µ

′‖µ) ≤ k where
∆KL(µ

′‖µ) denotes the Kullback-Leibler divergence of µ′ and µ,
defined as EX∼µ′ log(µ′(X)/µ(X)).

Thus at least on a “moral level”, the following theorem should be
helpful for proving our main result:

5. Theorem (Rank one reweighing). Let µ be any distribution over rank
one n× n matrices and ε > 0. Then there exists an

√
n poly(1/ε)-spike

reweighing µ′ of µ and a rank one matrix L such that

‖L− Ẽ
µ′

X‖F ≤ ε‖L‖F (1)

One of the results of this paper is a proof of Theorem 5 (see ??). It
turns out that this can be done using ideas from the works on the log
rank conjecture.

From monochromatic rectangles to rank one reweighings

What does Theorem Theorem 5 has to do with the log rank conjec-
ture? To see the connection let us imagine that the distribution µ is
flat in the sense that it is a uniform distribution over rank one matri-
ces {u1v>1 , . . . , uNv>N} (this turns out to be essentially without loss of
generality) and consider the n× N matrices U and V whose columns
are u1, . . . , uN and v1, . . . , vN respectively. The n× n matrix Ẽµ uiv>i
is proportional to UV>. This matrix has the same spectrum (i.e., sin-
gular values) as the N × N matrix U>V. Hence, UV> is close to a
rank one matrix if and only if U>V is, since in both cases this hap-
pens when the square of the top singular value dominates the sum
of the squares of the rest of the singular values. Now a flat distribu-
tion µ′ with ∆KL(µ

′‖µ) ≤ k corresponds to the uniform distribution
over {uiv>i }i∈I where I ⊆ [N] satisfies |I| ≥ 2−k N. We can see that
Eµ′ uiv>i will be approximately rank one if and only if the submatrix
of U>V corresponding to I is approximately rank one. Using these
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6 To show this formally we use the fact
that by Markov, every distribution µ′

with ∆KL(µ
′‖U[N]) = log N − H(µ′) = k

is ε-close to a distribution with min
entropy log N − O(k/ε) and every
distribution of the latter type is a
convex combination of flat distributions
of support at least N2−O(k/ε).

7 We note a caveat that this depends
on the notion of “approximate” used.
Gavinsky and Lovett Gavinsky and
Lovett [2014] showed that to prove
the log rank conjecture it suffices to
find a in a rank n Boolean matrix a
rectangle of measure exp(−polylog(n))
that is nearly monochromatic in the
sense of having a 1− 1/O(n) fraction
of its entries equal. In this paper we
are more concerned with rectangles
whose distance to being rank one (or
monochromatic) is some ε > 0 that is
only a small constant or 1/ polylog(n).
[fn:approx-monochromatic]

ideas it can be shown that Theorem [thm:rank-one-reweighing] is
equivalent to the following theorem:6

6. Theorem (Rank one reweighing—dual formulation). Let A be any
N × N matrix of rank at most n. Then there exists a subset I ⊆ [N] with
with |I| ≥ exp(−

√
n poly(1/ε))N and a rank one matrix L such that

‖L− AI,I‖F ≤ ε‖L‖F (2)

where AI,I is the submatrix corresponding to restricting the rows and
columns of A to the set I.

One can think of Theorem 6 as an approximate and robust version
of Lovett’s result Lovett [2014] mentioned above. Lovett showed that
every N × N matrix of rank n with Boolean entries has a 2−Õ(

√
n)N ×

2−Õ(
√

n)N submatrix that is of exactly rank 1. We show that the
condition of Booleanity is not needed if one is willing to relax the
conclusion to having a submatrix that is only approximately rank
1. It is of course extremely interesting in both cases whether the
bound of Õ(

√
n) can be improved further, ideally all the way to

polylog(n). In the Boolean setting, such a bound might prove the
log rank conjecture,7 while in our setting such a bound (assuming it
extends to “pseudo matrices”) would yield a quasipolynomial time
algorithm for BSS, hence showing that QMA(2) ⊆ EXP. It can be
shown that as stated, Theorem [thm:rank-one-reweighing] is tight.
However there are different notions of being “close to rank one” that
could be useful in both the log-rank and the quantum separability
setting, for which there is hope to obtain substantially improved
quantitative bounds. We discuss some of these conjectural directions
in ??.

Overview of proof

In the rest of this technical overview, we give a proof sketch of Theo-
rem 6 and then discuss how the proof can be “lifted” to hold in the
setting of sum of square pseudo-distributions. The condition that
a matrix A is of rank n is the same as that A = UV> where U, V
are two n × N matrices with columns u1, . . . , uN and v1, . . . , vN re-
spectively (i.e., Ai,j = 〈ui, vj〉 for all i, j ∈ [N]). We will restrict our
attention to the case that all the columns of U and V are of unit norm.
(This restriction is easy to lift and anyway holds automatically in
our intended application.) In this informal overview, we also restrict
attention to the symmetric case, in which A = A> and can be written
as A = UU> and also assume that U is isotropic, in the sense that
Ei∈[N] uiu>i = 1

n Id.
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Our inspiration is Lovett’s result Lovett [2014] which establishes
a stronger conclusion for Boolean matrices. In particular, our proof
follows Rothvoß’s proof Rothvoß [2014] of Lovett’s theorem, though
the non-Boolean setting does generate some non-trivial complications.
The N × N matrix A satisfies that Ai,j = 〈ui, uj〉. An equivalent way
to phrase our goal is that we want to find a subset I ⊆ [N] over the
indices such that:

<dl> <dt>(i)</dt> <dd>

|I| ≥ exp(−Õ(
√

n))N.

</dd> <dt>(ii)</dt> <dd>

If λ1 ≥ λ2 ≥ · · · λn are the eigenvalues of Ei∈I uiu>i then ε2λ2
1 ≥

∑n
j=2 λ2

j

</dd> </dl>

We will chose the set I probabilistically and show that (i) and (ii)
above hold in expectation. It is not hard to use standard concentration
of measure bounds to then deduce the desired result but we omit
these calculations from this informal overview.

Our initial attempt for the choice of I is simple, and is directly
inspired by Rothvoß [2014]. We choose a random standard Gaussian
vector g ∈ N(0, 1

n Id) (i.e., for every i, gi is an independent standard
Gaussian of mean zero and variance 1/n). We then define Ig = {i :
〈g, ui〉 ≥

√
k/n} where k = Õ(

√
n) is a parameter to be chosen later.

Since ui is a unit vector, 〈g, ui〉 is a Gaussian of variance 1/n, and so
for every i, the probability that i ∈ Ig is exp(−O(k)) hence satisfying
(i) in expectation.

The value λ1 of Ei∈I uiu>i will be at least Ω(k/n) in expectation.
Indeed, we can see that the Gaussian vector g that we choose (which
satisfies ‖g‖2 = 1± o(1) with very high probability) will satisfy that
g>
(
Ei uiu>i

)
g = Ei∈Ig〈ui, g〉2 ≥ k/n and hence in expectation the top

eigenvalue of Ei uiu>i will be at least (1− o(1))k/n.

So, if we could only argue that in expectation it will hold that
∑n

j=1 λ2
j � k2/n2 = polylog(n)/n then we’d be done. Alas, this is

not necessarily the case. However, if this does fail, we can see that we
have made progress, in the sense that by restricting to the indices in
I we raised the Frobenius norm of E uiu>i from the previous value
of 1/n (under the assumption that U was isotropic) to polylog(n)/n.
Our idea is to show that this holds in general: we can select a Gaus-
sian vector g and define the set Ig as above such that by restricting
to the indices in Ig we either get an approx rank one matrix or we
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increase the Frobenius norm of our expectation matrix by at least
an (1 + ε) factor for an appropriately chosen ε > 0. Since the latter
cannot happen more than log n/ε times, the final set of indices still
has measure exp(−Õ(

√
n)).

In further rounds, if our current set of indices is I and the ma-
trix (after subtracting from each vector ui its expectation) UI =

Ei∈I uiu>i = ∑n
j=1 λjvjv>j is not approximately rank one, then rather

than choosing g as a standard Gaussian, we choose it from the dis-
tribution N(0, UI) where we use UI as the covariance matrix. The
expected norm of g is simply Tr(UI) which equals 1. For every i, the
random variable 〈ui, g〉 is a Gaussian with mean zero and variance
∑n

j=1〈ui, vj〉λj. But for every j in expectation over i, E〈ui, vj〉2 = λj

and so it turns out that we can assume that this random variable has
variance ∑ λ2

j = ‖UI‖2
F.

This means that if we choose I′ = {i ∈ I : 〈ui, g〉 ≥
√

k‖UI‖F}
we get a subset of I with measure exp(−O(k)). But now the new
matrix UI′ = Ei∈I′ uiu>i will have an eigenvalue of at least k‖UI‖2

F
magnitude which is much larger than ‖UI‖F since we chose k �

√
n.

Hence UI′ has significantly larger Frobenius norm than UI .

The above arguments can be made precise, and we do so in Sec-
tion [sec:structure-thm].

Rectangle lemma for pseudo-distributions

The above is sufficient to show that given N × n matrices U =

(u1| · · · |uN) and V = (v1| · · · |vn) (which we view as inducing a
distribution over rank one matrices by taking uiv>i for a random
i), we can condition on a not too unlikely event (of probability
exp(−Õ(

√
n)) to obtain that E uiv>i is roughly rank one. But in

the sos setting we are not given such matrices. Rather we have access
to an object called a “pseudo-distribution” µ which we behaves to
a certain extent as if it is such a distribution, but for which it is not
actually the case. In particular, we are not able to sample from µ, or
condition it on arbitrary events, but rather only compute Eµ f (X) for
polynomials f of degree at most Õ(

√
n), and even these expectations

are only “pseudo expectations” in the sense that they do not need to
correspond to any actual probability distribution.

To lift the arguments above to the sos setting, we need to first
show that if µ was an actual distribution, then we could perform all
of the above operations using only access to Õ(

√
n) degree moments

of µ. Then we need to show that our analysis can be captured by the
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degree Õ(
√

n) sos proof systems. Both these steps, which are carried
out in Section [??] of this paper, are rather technical and non-trivial,
and we do not describe them in this overview.

For starters, we need to move from conditioning a probability dis-
tribution to reweighing it. All of our conditioning procedures above
had the form of restricting to i’s such that ξ(i) ≥

√
k where ξ(i)

was probabilistically chosen so that for every i ξ(i) is a a mean zero
and standard deviation one random variable satisfying P[ξ(i) =

`] = exp(−Θ(`2)). We replace this conditioning by reweighing the
distribution i with the function ζ(i) = exp(

√
kξ(i)). Note that it-

erative conditioning based on functions ξ1, . . . , ξt can be replaced
with reweighing by the product function ζ1, . . . , ζt. We then show
that these ζ j functions can be approximated by polynomials of Õ(k)
degree.

The arguments above allow us to construct a rounding algorithm
that at least makes sense syntactically, in the sense that it takes the
Õ(
√

n) degrees moments of µ and produces a rank one matrix that is
a candidate solution to the original matrix. To analyze this algorithm,
we need to go carefully over our analysis before, and see that all
the arguments used can be embedded in the sos proof system with
relatively low degree. Luckily we can rely on the recent body of
works that establishes a growing toolkit of techniques to show such
embeddings ?.
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