
Proof, beliefs, and algorithms through the lens of sum-of-squares 1

1 See The equation that couldn’t be solved
by Mario Livio for much of this history.

Introduction

The terms “Algebra” and “Algorithm” both originate from the same
person. Muhammad ibn Musa al Khwarizmi was a 9th century Per-
sian mathematician, astronomer and geographer. The Latin transla-
tion of his books introduced the Hindu-Arabic decimal system to the
western world. His book “The Compendious Book on Calculation by
Completion and Balancing” also presented the first general solution
for quadratic equations via the technique of “completing the square”.
More than that, this book introduced the notion of solving general as
opposed to specific equations by a sequence of manipulations such
as subtracting or adding equal amounts. Al Khwarizmi called the
latter operation al-jabr (“restoration” or “completion”), and this term
gave rise to the word Algebra. The word Algorithm is derived from the
Latin form of Al Khwarizmi’s name.1

Figure 1: Muhammad ibn Musa al-
Khwarizmi (from a 1983 Soviet Union
stamp commemorating his 1200 birth-
day).

However, the solution of equations of degree larger than two took
much longer time. Over the years, a great many ingenious people
devoted significant effort to solving special cases of such equations.
In the 14th century, the Italian mathematician Maestro Dardi of Pisa
gave a classification of 198 types of cubic (i.e., degree 3) and quartic
(i.e., degree 4) equations, but could not find a general solution for all
such examples. Indeed, in the 16th century, Italian mathematicians
would often hold “Mathematical Duels” in which opposing math-
ematicians would present to each other equations to solve. These
public competitions attracted many spectators, were the subject of
bets, and winning such duels was often a condition for obtaining
appointments or tenure at universities. It is in the context of these
competitions, and through a story of intrigue, controversy and bro-
ken vows, that the general formula for cubic and quartic equations
was finally discovered, and later published in the 1545 book of Car-
dano.

However, the solution for quintic formulas took another 250 years.
Many great mathematicians including Descartes, Leibnitz, Lagrange,



Boaz Barak and David Steurer 2

2 There is also a practical motivation for
this as well: real-world problems often
have their own kinks and features, and
will rarely match up exactly to one of
the problems in the textbook. A general
algorithmic framework can be applied
to a wider range of problems, even if
they have not been studied before.

Euler, and Gauss worked on the problem of solving equations of
degree five and higher, finding solutions for special cases but without
discovering a general formula. It took until the turn of the 19th
century and the works of Ruffini, Galois and Abel to discover that in
fact such a general formula for solving degree 5 or higher equations
via combinations of the basic arithmetic formulas and taking roots
does not exist. More than that, these works gave rise to a precise
characterization of which equations are solvable and thus led to the
birth of group theory.

Today, solving an equation such as x17 = 1 (which amounts to
constructing a 17-gon using a compass and straightedge- one of the
achievements Gauss was most proud of) can be done in a few lines
of routine calculations. Indeed, this is a story that repeats itself often
in science: we move from special cases to a general theory, and in
the process transform what once required creative genius into mere
calculations. Thus often the sign of scientific success is when we
eliminate the need for creativity and make boring what was once
exciting.

Let us fast-forward to present days, where the design of algorithms
is another exciting field that requires a significant amount of creativ-
ity. The Algorithms textbook of Cormen et al. has 35 chapters, 156

sections, and 1312 pages, dwarfing even Dardi’s tome on the 198

types of cubic and quartic equations. The crux seems to be the nature
of efficient computation. While there are some exceptions, typically
when we ask whether a problem can be solved at all the answer is
much simpler, and does not seem to require such a plethora of tech-
niques as is the case when we ask whether the problem can be solved
efficiently. Is this state of affairs inherent, or is it just a matter of time
until algorithm design will become as boring as solving a single
polynomial equation?

We will not answer this question in this course. However, it does
motivate some of the questions we ask, and the investigations we
pursue. In particular, this motivates the study of general algorithmic
frameworks as opposed to tailor-made algorithms for particular prob-
lems.2 There are several such general frameworks, but we will focus
on one example that arises from convex programming: the Sum of
Squares (SOS) Semidefinite Programming Hierarchy. It has the advantage
that on the one hand it is general enough to capture many algorith-
mic techniques, and on the other hand it is specific enough that (if we
are careful) we can avoid the “curse of completeness”. That is, we can
actually prove impossibility results or lower bounds for this frame-
work without inadvertently resolving questions such as P vs NP. The



Proof, beliefs, and algorithms through the lens of sum-of-squares 3

3 In particular, given a 3SAT formula
of a form such as (x7 ∨ x12 ∨ x29) ∧
(x5 ∨ x7 ∨ x32) ∧ · · ·, we can easily
translate the question of whether it has
a satisfying assignment x ∈ {0, 1}n

(where n is the number of variables)
into the question of whether the
equations x2

1 − x1 = 0, . . . , x2
n − x1 =

0, P(x)− m = 0 can be solved where
m is the number of clause and P(x)
is the degree 6 polynomial obtained
by summing for every clause j the
polynomial Cj such that Cj(x) equals
1 if x satisfies jth clause and Cj(x) = 0
otherwise.

hope is that we can understand this framework enough to be able to
classify which problems it can and can’t solve. Moreover, as we will
see, through such study we end up investigating issues that are of
independent interest, including mathematical questions on geometry,
analysis, and probability, as well as questions about modeling beliefs
and knowledge of computationally bounded observers.

The Sum of Squares Algorithm

Let us now take a step back from the pompous rhetoric and slowly
start getting around to the mathematical contents of this course. It
will be mostly be focused on the Sum of Squares (SOS) semidefinite
programming hierarchy. In a sign that perhaps we did not advance so
much from the middle ages, the SOS algorithm is also a method for
solving polynomial equations, albeit systems of several equations in
several variables. However, it turns out that this is a fairly general
formalism. Not only is solving such equations, even in degree two,
NP-hard, but in fact one can often reduce directly to this task from
problems of interest in a fairly straightforward manner.3

We will be interested in solving such equations over the real num-
bers, and typically in settings where (a) the polynomials in questions
are low degree, and (b) obtaining an approximate solution is essen-
tially as good as obtaining an exact solution, which helps avoid at
least some (if not all) issues of precision and numerical accuracy.
Nevertheless, this is still a very challenging setting. In particular,
whenever there is more than one equation, or the degree is higher
than two, the task of solving polynomial equations becomes non con-
vex, and generally speaking, there can be exponentially many local
minima for the “energy function” which is obtained by summing
up the square violations of the equations. This is problematic since
many of the tools we use to solve such equations involve some form
of local search, maintaining at each iteration a current solution and
looking for directions of improvements. Such methods can and will
get “stuck” at such local minima.

When faced with a non-convex problem, one approach that is used
in both practice and theory is to enlarge the search space.

Geometrically, we hope that by adding additional dimensions, one
may find new ways to escape local minima. Algebraically, this often
amounts to adding additional variables, with a standard example
being the linearization technique where we reduce, say, quadratic
equations in n variables into a linear equations in n2 variables by



Boaz Barak and David Steurer 4

4 A linear program is the task of solving
a set of linear inequalities (i.e., finding
x that satisfies equations of the form
∑ aixi ≤ b). The set of x’s satisfying
some linear inequalities is known as a
polyhedron and is convex. A semidefinite
program is obtained by adding to a
linear program a constraint of the form
M(x) � 0 where M is a symmetric
matrix whose every entry is a linear
function of x, and M � 0 denotes
that M is positive semidefinite (i.e.
w>Mw ≥ 0 for all vectors w). Geomet-
rically, the intersection of a polyhedron
with such a constraint is known as a
spectrahedron.

letting yi,j correspond to xixj. If the original system was sufficiently
overdetermined, one could hope that we can still solve for y.

The SOS algorithm is a systematic way of enlarging the search
space, by adding variables in just such a manner. In the example
above it adds in the additional constraint that if the matrix Y = (yi,j)

would be positive semidefinite. That is, that it satisfies w>Yw ≥ 0
for every column vector w. (Note that if Y was in fact of the form
Yi,j = xixj then w>Yw would equal 〈w, x〉2 ≥ 0.) More generally, the
SOS algorithm is parameterized by a number `, known as its degree,
and for every set of polynomial equations on n variables, yields a
semidefinite program4 on n` variables that becomes a tighter and
tighter approximation of the original equations as ` grows. As the
problem is NP complete, we don’t expect this algorithm to solve
polynomial equations efficiently (i.e., with small degree `) in the most
general case, but understanding in which cases it does so is the focus
of much research efforts and the topic of this course.

History

The SOS algorithm has its roots in questions raised in the late 19th
century by Minkowski and Hilbert of whether any non-negative
polynomial can be represented as a sum of squares of other poly-
nomials. Hilbert realized that, except for some special cases (most
notably univariate polynomials and quadratic polynomials), the
answer is negative and that there are examples—which he showed
to exist by non constructive means—of non-negative polynomial
that cannot be represented in this way. It was only in the 1960’s that
Motzkin gave a concrete example of such a polynomial, namely
1 + x4y2 + x2y4 − 3x2y2. By the arithmetic-mean geometric-mean

inequality, 1+x4y2+x2y2

3 ≥ (1 · x4y2 · x2y4)1/3 and hence this polynomial
is always non-negative. However, it is not hard, though a bit tedious,
to show that it cannot be expressed as a sum of squares.

In his famous 1900 address, Hilbert asked as his 17th problem
whether any polynomial can be represented as a sum of squares of
rational functions. (For example, Motzkin’s polynomial above can be
shown to be the sum of squares of four rational functions of denomi-
nator and numerator degree at most 6). This was answered positively
by Artin in 1927. His approach can be summarized as follows: given
a hypothetical polynomial P that cannot be represented in this form,
to use the fact that the rational functions are a field to extend the re-
als into a “pseudo-real” field R̃ on which there would actually be an
element x̃ ∈ R̃ such that P(x̃) < 0, and then use a “transfer principle”



Proof, beliefs, and algorithms through the lens of sum-of-squares 5

5 This description is not meant to
be understandable but to make you
curious enough to look it up. . .

6 :FIXME in a previous version we also
had 1999 as the year for Grigoriev’s
lower bound. why is that? is there a
tech report? maybe we should cite that?

to show that there is an actual real x ∈ R such that P(x) < 0.5 Later
in the 60’s and 70’s, Krivine and Stengle extended this result to show
that any unsatisfiable system of polynomial equations can be certified
to be unsatisfiable via a Sum of Squares (SOS) proof (i.e., by show-
ing that it implies an equation of the form ∑r

i=1 p2
i = −1 for some

polynomials p1, . . . , pr). This result is known as the Positivstellensatz.

In the late 90’s / early 2000’s, there were two separate efforts on
getting quantitative / algorithmic versions of this result. On one
hand Grigoriev and Vorobjov [2001] asked the question of how large
the degree of an SOS proof needs to be, and in particular Grigoriev
[2001]6 proved several lower bounds on this degree for some inter-
esting polynomials. On the other hand Parrilo [2000] and Lasserre
[2000/01] independently came up with hierarchies of algorithms
for polynomial optimization based on the Positivstellensatz using
semidefinite programming. (A less general version of this algorithm
was also described by Naum Shor [1987] in a 1987 Russian paper,
which was cited by Nesterov in 1999.)

It turns that the SOS algorithm generalizes and encapsulates
many other convex-programming based algorithmic hierarchies such
as those proposed by Lovász and Schrijver [1991] and Sherali and
Adams [1990], and other more specific algorithmic techniques such
as linear programming and spectral techniques. As mentioned above,
the SOS algorithm seems to achieve a “goldilocks” balance of being
strong enough to capture interesting techniques but weak enough so
we can actually prove lower bounds for it. One of the goals of this
course (and line of research) is to also understand what algorithmic
techniques can not be captured by SOS, particularly in the setting
(e.g., noisy low-degree polynomial optimization) where it seems most
appropriate for.

Applications of SOS

SOS has applications to: equilibrium analysis of dynamics and con-
trol (robotics, flight controls, . . . ), robust and stochastic optimization,
statistics and machine learning, continuous games, software verifica-
tion, filter design, quantum computation and information, automated
theorem proving, packing problems, etc. (For two very different
examples, see Figs. 2 and 3.)



Boaz Barak and David Steurer 6

Figure 2: SOS was used to analyze the
“falling leaf” mode of the U.S. Navy
F/A-18 “Hornet”, see A. Chakraborty,
P. Seiler, and G. J. Balas, Journal
of guidance, control, and dynam-
ics, 34(1):73–85, 2011. (Image credit:
Wikipedia)

Figure 3: Bachoc and Vallentin used
sum-of-squares to give the best known
upper bounds for sphere kissing num-
bers in higher dimensions. See “New
upper bounds for kissing numbers from
semidefinite programming”, C Bachoc,
F Vallentin, Journal of the American
Mathematical Society 21 (3), 909-924.
(Image credit: A. Traffas)



Proof, beliefs, and algorithms through the lens of sum-of-squares 7

7 Since both time and space complexity
of the general SOS algorithm scale
roughly like n`, even ` = 6 and
n = 100 would take something like a
petabyte of memory. This may justify
the optimization/control view of
keeping n small, although if we show
that SOS yields a polynomial-time
algorithm for a particular problem, then
we can hope that we would be able
to then optimize further and obtain
an algorithm that doesn’t require a
full-fledged SOS solver. As we will see
in this course, this hope has actually
materialized in some settings.

The TCS vs Mathematical Programming view of SOS

The SOS algorithm is intensively studied in several fields, but dif-
ferent communities emphasize different aspect of it. The main char-
acteristics of the Theoretical Computer Science (TCS) viewpoint, as
opposed to that of other communities are:

• In the TCS world, we typically think of the number of variables
n as large and tending to infinity (as it corresponds to our input
size), and the degree ` of the SOS algorithm as being relatively
small— a constant or logarithmic. In contrast, in the optimization
and control world, the number of variables can often be very small
(e.g., around ten or so, maybe even smaller) and hence ` may be
large compared to it.7

• Typically in TCS our inputs are discrete and the polynomials are
simple, with integer coefficients and constraints such as x2

i =

xi that restrict attention to the Boolean cube. Thus we are less
concerned with issues of numerical accuracy, boundedness, etc..

• Traditionally people have been concerned with exact convergence
of the SOS algorithm— when does it yield an exact solution to the
optimization problem. This often precludes ` from being much
smaller than n. In contrast as TCS’ers we would often want to un-
derstand approximate convergence– when does the algorithm yield
an “approximate” solution (in some problem-dependent sense).
Since the output of the algorithm in this case is not actually in the
form of a solution to the equations, this raises the question of a
obtaining rounding algorithms, which are procedures to translate
the output of the algorithm to an approximate solution.

SOS as a “cockroach”

In theoretical computer science we typically define a computational
problem P and then try to find the best (e.g., most time efficient
orbest approximation factor) algorithm A for this problem. One can
ask what is the point in restricting attention to a particular algorith-
mic framework such as SOS, as opposed to simply trying to find the
best algorithm for the problem at hand. One answer is that we could
hope that if a problem is solved via a general framework, then that
solution would generalize better to different variants and cases (e.g.,
considering average-case variants of a worst-case problem, or measur-
ing “goodness” of the solution in different ways). This is a general
phenomenon that occurs time and again many fields, known under



Boaz Barak and David Steurer 8

many names including the “bias variance trade-off”, the “stability
plasticity dilemma”, “performance robustness trade-off” and many
others. That is, there is an inherent tension between optimally solving
a particular question (or optimally adapting to a particular environ-
ment) and being robust to changes in the question/environment (e.g.,
avoiding “over-fitting”). For example, consider the following two
species that roamed the earth few hundred million years ago during
the Mesozoic era. The dinosaurs were highly complex animals that
were well adapted to their environment. In contrast cockroaches have
extremely simple reflexes, operating only on very general heuristics
such as “run if you feel a brush of air”. As one can tell by the scarcity
of “dinosaur spray” in stores today, it was the latter species that was
more robust to changes in the environment. With that being said, we
do hope that the SOS algorithm is at least approximately optimal in
several interesting settings.

References

Dima Grigoriev. Linear lower bound on degrees of positivstellensatz
calculus proofs for the parity. Theor. Comput. Sci., 259(1-2):613–622,
2001.

Dima Grigoriev and Nicolai Vorobjov. Complexity of null-and
positivstellensatz proofs. Ann. Pure Appl. Logic, 113(1-3):153–160,
2001.

Jean B. Lasserre. Global optimization with polynomials and the
problem of moments. SIAM J. Optim., 11(3):796–817, 2000/01.
ISSN 1052-6234. doi: 10.1137/S1052623400366802. URL http:
//dx.doi.org/10.1137/S1052623400366802.

László Lovász and Alexander Schrijver. Cones of matrices and set-
functions and 0-1 optimization. SIAM Journal on Optimization, 1(2):
166–190, 1991.

Pablo A Parrilo. Structured semidefinite programs and semialgebraic
geometry methods in robustness and optimization. PhD thesis, California
Institute of Technology, 2000.

Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations
between the continuous and convex hull representations for zero-
one programming problems. SIAM J. Discrete Math., 3(3):411–
430, 1990. ISSN 0895-4801. doi: 10.1137/0403036. URL http:
//dx.doi.org/10.1137/0403036.

http://dx.doi.org/10.1137/S1052623400366802
http://dx.doi.org/10.1137/S1052623400366802
http://dx.doi.org/10.1137/0403036
http://dx.doi.org/10.1137/0403036


Proof, beliefs, and algorithms through the lens of sum-of-squares 9

N. Z. Shor. An approach to obtaining global extrema in polynomial
problems of mathematical programming. Kibernetika (Kiev), (5):
102–106, 136, 1987. ISSN 0023-1274.


	Introduction
	The Sum of Squares Algorithm
	History
	Applications of SOS
	The TCS vs Mathematical Programming view of SOS
	SOS as a ``cockroach''

