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Mathematical Definitions

Let us now turn to formally defining the problem of polynomial
optimization and the sum-of-squares algorithm. In the first few
lectures, we will restrict our attention to the following basic special
case, which still captures many interesting examples:

1. Problem (Non-negativity over the hypercube). Given a low-
degree polynomial f : {0, 1}n → R, decide if f ≥ 0 over the hy-
percube or if there exists a point x ∈ {0, 1}n such that f (x) < 0.

One interesting computational task captured by this problem is
finding a maximum cut in a graph. For an n-vertex graph G, we
encode a bipartition of the vertex set of G by a vector x ∈ {0, 1}n and
we let fG(x) be the number of edges cut by the bipartition x. This
function is a degree-2 polynomial,

fG(x) = ∑
{ij}∈E(G)

(xi − xj)
2 . (1)

Therefore, deciding if the polynomial c− fG takes a negative value
over the hypercube is the same as deciding if the maximum cut in G
is larger than c.

The traditional definition of the Max-Cut problem is to recover,
given a graph G, the cut x maximizing fG(x). A priori, computing
maxx fG(x), or deciding whether this maximum is larger than c, is
an easier task than recovering the cut. However, in this and many
other settings, all known algorithms for solving the decision task (i.e.,
is max fG(x) larger than c?) easily generalize to solving the search
problem (i.e., recovering x that exactly or approximately maximizes
fG(x)).

The sum-of-squares algorithm, when restricted to the special case
Problem 1, gets a polynomial f : {0, 1}n → R as input and outputs

• either a proof that f (x) ≥ 0 for all x ∈ {0, 1}n,

• or an object that “pretends to be” a point x ∈ {0, 1}n with f (x) < 0
or, more generally, a collection of such points.

What is the form of this proof? What is the meaning of “pretends
to be”? And how can we find such an object when finding an actual
solution is hard? These are the questions we address next.
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1 See Exercise 7.

2 See Exercise 6. The underlying
technical reason is the fact that
{xi(xi − 1)}i∈[n] is a small Groebner
basis for the hypercube {0, 1}n.
3 Concretely, we need to assume that
already f − ε has a degree-d sos
certificate.

Sum-of-squares certificates

How could we efficiently certify for a given polynomial f : {0, 1}n →
R that it is nonnegative over the hypercube? Since a square is always
non-negative, one simple certificate is to show that f agrees with a
sum of squares of polynomials over the hypercube. This observation
motivates the following definition.

2. Definition (sum-of-squares certificate). A degree-d sum-of-
squares certificate (of non-negativity) for a function f : {0, 1}n → R

consists of polynomials g1, . . . , gr : {0, 1}n → R of degree at most d/2
for some r ∈N such that

f (x) = g2
1(x) + · · ·+ g2

r (x) . (2)

for every x ∈ {0, 1}n.

We will refer to degree-d sos certificate for f also as a degree-d
sum-of-squares proof of the inequality f ≥ 0.

Verifying certificates

In what sense is this certificate efficiently verifiable? Since g1 . . . , gr

have degree at most d/2, we can represent each polynomial gi by
nO(d) coefficients (say in the monomial basis). It also turns out that
we can assume r to be at most nO(d).1 Thus in nO(d) time, we can
reduce the task of verifying (2) to the task of checking that an explicit
polynomial p (obtained by computing the coefficients of f − (g2

1 +

· · · + g2
r )) vanishes for every x ∈ {0, 1}n. It can be shown that this

holds if and only if p becomes the zero polynomial if we reduce
it to a multilinear polynomial (where every monomial with non-
zero coefficient is of the form ∏i∈S xi for some subset S ⊆ [n]) by
repeatedly applying the identity x2

i = xi (which holds when xi ∈
{0, 1}).2 Since f − (g2

1 + · · ·+ g2
r ) has degree at most d, we need to

consider at most nO(d) coefficients. Finally, some mild assumptions
on f allow us to assume that the bit length of the coefficients is
bounded by nO(d).3 It follows that we can verify the certificate in time
nO(d).

For large enough degree, every nonnegative functions has a sum-
of-squares certificate of non-negativity:

3. Lemma (high-degree sos proofs). Every nonnegative function
f : {0, 1}n → R has a degree-2n sum-of-squares certificate.
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4 Unless explicitly specified otherwise,
when we give an n-variate degree-d
polynomial as an input to an algorithm,
we represent it by its coefficients in
the monomial basis up to degree d.
Furthermore, we assume that the
bit length of the coefficients is at
most polynomial in the number of
coefficients, which is roughly nd.

Proof. Let g : {0, 1}n → R be the function that agrees with
√

f on the
hypercube. This function satisfies f = g2 over the hypercube and its
multilinear representation of g has degree at most n. Therefore, g is a
degree-2n sos certificate for f .

In the most general setting (when we allow arbitrary polynomial
equality and inequality constraints over Rn instead of just a single
polynomial inequality over the hypercube) this result is known
as the Positivstellensatz and was proven by Krivine in 1964 (and
independently but later by Stengle in 1974), extending Artin’s 1927

resolution of Hilbert’s 17th problem.

Finding certificates

Not only can we check sos certificates efficiently but there is also
an efficient algorithm to find them if they exist. This sum-of-squares
algorithm is based on semidefinite programming and has first been
proposed by Naum Shor in 1987, later refined by Pablo Parrilo in
2000, and Jean Lasserre in 2001.

4. Theorem (sum-of-squares algorithm—certificate version). There
exists an algorithm that given a polynomial4 f : {0, 1}n → R (say repre-
sented in the monomial basis with polynomial bit complexity) and a number
k ∈ N, outputs a degree-k sum-of-squares certificate for f + 2−n in time
nO(k) if f has a degree-k sos certificate.

This result as well extends far beyond the case of a single poly-
nomial over the hypercube to any set of polynomials equalities and
inequalities over Rn.

To get some intuition for the sum-of-squares algorithm, note that
the polynomials f with degree-d sos certificates form a convex cone
(a set closed under convex combination and nonnegative scaling). See
Exercise 8 for some basic properties of this cone. We refer to this cone
as the degree-d sum-of-squares cone (over the hypercube).

The key insight for Theorem 4 is that the degree-d sos cone admits
a small semidefinite programming (SDP) formulation, which turns
out to follow from the following characterization of sos certificates in
terms of positive semidefinite matrices.

5. Theorem (positive semidefinite matrices and sos certificates).
A polynomial f has a degree-d sos certificate if and only if there exists a
positive semidefinite matrix A such that for all x ∈ {0, 1}n,

f (x) =
〈
(1, x)⊗d/2, A(1, x)⊗d/2

〉
. (3)
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Proof. Suppose Eq. (3) holds for a positive semidefinite matrix A. Let
gi be the polynomial such that gi(x) = 〈ei, A1/2(1, x)⊗d/2〉. Then, f
has the following degree-d sos certificate,

f (x) =
∥∥∥A1/2(1, x)⊗d/2

∥∥∥2
= ∑

i
gi(x)2 . (4)

(Here, we use that positive semidefinite matrices have square roots
over the reals.)

On the other hand, suppose that f has a deg-d sos certificate,
f = ∑r

i=1 g2
i . Let v1, . . . , vr be vectors such that gi(x) = 〈vi, (1, x)⊗d/2〉

for all x ∈ Rn and let A = ∑i vivi
ᵀ. Then, for every x ∈ {0, 1}n,

f (x) = ∑
i

gi(x)2 = ∑
i

〈
vi, (1, x)⊗d/2

〉2
=
〈
(1, x)⊗d/2, A(1, x)⊗d/2

〉
.

(5)

Exercises I

The following exercises are about basic properties of sos certificates
and some examples.

6. Exercise (multilinear representation). Show that every function
f : {0, 1}n → R has a unique multilinear representation f (x) =

∑S⊆[n] cSxS where xS = ∏i∈S xi.

The multilinear representation of a function f : {0, 1}n → R is
closely related to its Fourier transform, see Ryan O’Donnell’s excellent
book on this topic.

7. Exercise (rank of sos representations). Show that every function
f : {0, 1}n → R with a degree-d sos certificate has one of rank at most
nd/2.

8. Exercise (closed convex cone). Show that for every k ∈ N, the
polynomials with degree-k sos certificates of non-negativity form a
closed convex cone.

9. Exercise (minimum s-t cut). For an n + 2-vertex digraph G with a
source s and sink t, let f (x) with x ∈ {0, 1}V(G)\{s,t} be the number of
edges going out of {s} ∪ {i ∈ V(G) \ {s, t} | xi = 1}. Show that f is a
degree-2 polynomial and that f − c has a degree-4 sos certificate for all
c ∈ R such that f − c ≥ 0.

http://www.contrib.andrew.cmu.edu/~ryanod/
http://www.contrib.andrew.cmu.edu/~ryanod/
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10. Exercise (spectral bound for max cut). For a graph G, let LG be
the Laplacian matrix

LG = ∑
(i,j)∈E(G)

(ei − ej)(ei − ej )T , (6)

where {ei | i ∈ V(G)} is the coordinate basis. Show that every graph
G with n vertices the function λmax(LG) · n/2− fG has a degree-2 sos
certificate.

11. Exercise (some bound). Show that for every even d ∈ N and
every function f : {0, 1}n → R of degree at most d, there exists some
M ∈ R≥0 such that M− f has a degree-d sos certificate. Also show
that M can be chosen at most nO(d) times the largest coefficient of f
in the monomial basis.

Pseudo-distributions

What can we say about a function f : {0, 1}n → R if there is no
degree-k sos certificate for its non-negativity? Obviously, if the func-
tion is not actually non-negative, then there is no certificate for it.
Indeed that’s the only kind of obstruction for very large values of
k (by Lemma 3 it suffices that k ≥ 2n). However, it turns out that
for smaller values of k other kinds of obstructions exist. Since the
running time of the sum-of-squares algorithm is exponential in k,
understanding these more general obstructions is key.

The most direct description of obstructions for sos certificates is ge-
ometric. In the previous section, we saw that functions with degree-k
sos certificates form a closed convex cone. By the hyperplane sepa-
ration theorem for convex cones, for every function f : {0, 1}n → R

without degree-k sos certificate there exists a hyperplane through the
origin that separates f from the cone of functions with degree-k sos
certificates, in the sense that the halfspace H above the hyperplane
contains the degree-k sos cone but not f .

How do such halfspaces look like? We can represent a halfspace H
by its normal function µ : {0, 1}n → R so that

H =

g : {0, 1}n → R

∣∣∣∣∣∣ ∑
x∈{0,1}n

µ(x) · g(x) ≥ 0

 . (7)

By scaling we can assume without loss of generality that
∑x∈{0,1}n µ(x) = 1. It’s illuminating to consider the special case
that µ satisfies µ(x) ≥ 0 for all x ∈ {0, 1}n. Then, µ corresponds to
a probability distribution over the hypercube where every point

https://en.wikipedia.org/wiki/Hyperplane_separation_theorem
https://en.wikipedia.org/wiki/Hyperplane_separation_theorem
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5 This notation is analogous to the no-
tation Ex∼µ f (x) for actual probability
distributions, where x ∼ µ denotes
that x is a sample drawn form µ. We
avoid this notation because the process
of sampling is not well-defined in the
context of formal expectations.

x ∈ {0, 1}n has probability µ(x). In this case, the halfspace H
contains all nonnegative functions and therefore also the degree-k
sos cone. The condition f 6∈ H simply says that the expected
value of f (x) when x is drawn from the distribution µ is negative.
In particular, in this case, if f 6∈ H then there must exist some
x ∈ {0, 1}n such that f (x) < 0.

It turns out that even if µ does not satisfy µ ≥ 0 it behaves in
many ways like a probability distribution. To formalize this idea
we introduce the following notation for the formal expectation of
a function f : {0, 1}n → R with respect to another function µ (not
necessarily corresponding to a probability distribution),

Ẽ
µ

f = ∑
x∈{0,1}n

µ(x) · f (x) . (8)

In order to emphasize the variable bound by the formal expecta-
tion, we use the notation Ẽµ(x) f (x). This notation is useful when the
expression f (x) also depends on other variables.5

We define a “pseudo-distribution” to be a function µ such that the
formal expectation with respect to µ satisfies some of the properties
that expectations of probability distributions satisfy. However unlike
actual probability distributions, pseudo-distributions may assign
negative probabilities.

12. Definition (pseudo-distribution). A degree-d pseudo-distribution
over {0, 1}n is a function µ : {0, 1}n → R such that the formal expecta-
tion with respect to µ satisfies Ẽµ 1 = 1 and for every polynomial f of
degree at most d/2,

Ẽ
µ

f 2 ≥ 0 . (9)

We refer to formal expectations with respect to degree d pseudo-
distributions as degree d pseudo-expectations.

If a pseudo-distribution µ satisfies µ(x) ≥ 0 for all x then it
corresponds to an actual probability distribution over the hypercube.
Lemma 3 implies that every degree-2n pseudo-distribution µ over
{0, 1}n satisfies µ ≥ 0.

Note that a priori a degree-d pseudo-distribution µ : {0, 1}n → R

requires 2n numbers to specify (i.e., the values of µ on all inputs).
However, the following lemma allows us to reduce the number of
parameters to nO(d).

13. Lemma (polynomial representation of pseudo-distributions).
Let µ be a degree-` pseudo-distribution over {0, 1}n, there exists a multi-
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6 Here, orthgonality is with respect
to the following inner product for
real-valued functions on {0, 1}n,

〈 f , g〉 = ∑
x∈{0,1}n

f (x)g(x) . (11)

linear polynomial µ′ of degree at most ` such that

Ẽ
µ(x)

p = Ẽ
µ′(x)

p , (10)

for every p of degree at most `.

Proof. Let U` ⊆ R{0,1}n
be the linear subspace of multilinear poly-

nomials of degree at most `. By Exercise 6 this subspace contains
all polynomials of degree at most `. Decompose the function µ as
µ = µ′ + µ′′ such that µ′ ∈ U` and µ′′ is orthogonal to U`.6 For every
p ∈ U`,

Ẽ
µ

p = 〈µ′ + µ′′, p〉 = 〈µ′, p〉 = Ẽ
µ′

p , (12)

where we used the fact that µ′′ is orthogonal to U`.

We can extend the notation of Ẽµ(x) f (x) to the case that f is a
vector valued function, in which case this denotes the vector obtained
by taking expectation of every coordinate of f . Using this notation we
can write the conclusion of Lemma 13 more succinctly as

Ẽ
µ(x)

(1, x)⊗` = Ẽ
µ′(x)

(1, x)⊗` , (13)

where for an m-dimensional vector v and d ∈ N, v⊗d denotes the md

dimensional vector such that (v⊗d)i1,...,id = vi1 · · · vid . Indeed, every
coordinate of (1, x)` is a polynomial of degree at most ` in x, and
these coordinates form a basis for all these polynomials, and so if the
expectations of (1, x)⊗` under µ and µ′ are equal then the expectation
of every degree ≤ ` polynomial p would be equal as well.

Exercises II

The following exercises are about basic properties of pseudo-
distributions.

14. Exercise (high-degree pseudo-distributions). Show that every
degree-2n pseudo-distribution µ over {0, 1}n satisfies µ(x) ≥ 0 for
every x ∈ {0, 1}n. (Therefore, µ corresponds to an actual probability
distribution over {0, 1}n.)

15. Exercise (pseudo-distributions and psd moments). Show that a
function µ : {0, 1}n → R is a degree-d pseudo-distribution if and
only if Ẽµ 1 = 1 and the following pseudo-moment matrix is positive
semidefinite,

Ẽ
µ(x)

(
(1, x)⊗d/2

)(
(1, x)⊗d/2

)
ᵀ � 0 . (14)
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7 Hint: This exercise might require some
Fourier analysis.

16. Exercise (boundedness). Show that for every even d and every
degree-d pseudo-distribution µ, there exists a degree-d pseudo-
distribution µ′ with the same pseudo-moments up to degree d such
that for every x ∈ {0, 1}n,7

|µ′(x)| ≤ 2−n ·
d

∑
d′=0

(
n
d′

)
. (15)

(If µ′ was an actual probability distribution, this inequality would
mean that µ′ has min-entropy at most ≈ log(nd).)

17. Exercise (separation algorithm for pseudo-distributions). Show
that the set of degree-d pseudo-distributions over {0, 1}n admits a
separation algorithm with running time nO(d). Concretely, show that
there exists an nO(d)-time algorithm that given a vector N ∈ (Rn)⊗d

outside of the following set Xd outputs a halfspace that separates
N from Xd. Here, Xd is the set that consists of all coefficient vectors
M ∈

(
Rn+1)⊗d such that the function µ : {0, 1}n → R with µ(x) =〈

M, (1, x)⊗d
〉

is a degree-d pseudo-distribution over {0, 1}n.

18. Exercise (separation algorithm for pseudo-moments). Show that
for every even d ∈N, the following set of pseudo-moments admits a
separation algorithm with running time nO(d),

Md =

{
Ẽ

µ(x)
(1, x)⊗d

∣∣∣∣ µ is deg.-d pseudo-distr. over {0, 1}n
}

. (16)

Duality

We now show that pseudo-distributions are indeed dual to sos proofs
by demonstrating that their existence certifies the non-existence of a
proof and vice versa.

19. Theorem (Duality of sos certificates and pseudodistributions).
For every function f : {0, 1}n → R and every even d ∈ N, there exists
a degree-d sos certificate for the non-negativity of f if and only if every
degree-d pseudo-distribution µ over {0, 1}n satisfies Ẽµ f ≥ 0.

Proof. One direction is immediate. Suppose f has a degree-d sos
certificate so that f = g2

1 + · · ·+ g2
r for some polynomials g1, . . . , gr

with deg gi ≤ d/2. Then, every degree-d pseudo-distribution µ over
{0, 1}n satisfies

Ẽ
µ

f = Ẽ
µ

g2
1 + · · ·+ Ẽ

µ
g2

r ≥ 0 . (17)

For the other direction, suppose that f is not contained in the degree-
d sum-of-squares cone. By the hyperplane separation theorem, there

https://en.wikipedia.org/wiki/R%C3%A9nyi_entropy#Min-entropy
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exists a halfspace H through the origin that conains the cone but not
f . Let µ : {0, 1}n → R be the “normal” of H so that

H =

{
g : {0, 1}n → R

∣∣∣∣ Ẽ
µ

g ≥ 0
}

. (18)

Since f is not contained in H, it satisfies Ẽµ f < 0. Since H contains
the degree-d sos cone, every polynomial g of degree at most d/2
satisfies Ẽµ g2 ≥ 0. It remains to argue that Ẽµ 1 > 0, which means
that we can rescale µ by a nonnegative factor to ensure that Ẽµ 1 = 1.
Indeed, by Exercise 11, there exists M ∈ R≥0 such that M + f has a
degree-d sos certificate, which means that

Ẽ
µ

1 = 1
M ·
(

Ẽ
µ

M + f − Ẽ
µ

f
)
> 0 , (19)

as desired.

Sum-of-squares algorithm

Recall that we described the degree d sos algorithm as an algorithm
that, given as input a polynomial f : {0, 1}n → R, runs in nO(d) and
either outputs a certificate that f (x) ≥ 0 for all x, or outputs an object
that “pretends to be” a distribution over vectors x ∈ {0, 1}n such that
f (x) < 0. We now state this theorem formally.

20. Theorem (sum-of-squares algorithm). For every even d ∈ N, there
exists an nO(d)-time algorithm that given a polynomial f : {0, 1}n → R of
degree at most d (with polynomial bit length) either outputs a degree-d sos
certificate for f + 2−n or a degree-d pseudo-distribution µ over {0, 1}n such
that Ẽµ f < 2−n.

Proof sketch. We will show one part of the theorem (about finding
pseudo-distributions). The proof of the other part is similar but not
needed for most of the algorithmic applications we will discuss.

Suppose that f does not have a degree-d sos certificate. By the
duality between sos certificates and pseudo-distributions, there exists
a degree-d pseudo-distribution µ over {0, 1}n such that Ẽµ f < 0.
Our goal is to efficiently find a pseudo-distribution µ over {0, 1}n

such that Ẽµ f < 2−n. Let v be a vector such that f (x) = 〈v, (1, x)⊗d〉.
Then, Ẽµ f = 〈v, Ẽµ(1, x)⊗d〉. Therefore, we want to minimize the
linear function y 7→ 〈v, y〉 over the setMd of vectors of the form
Ẽµ(1, x)⊗d for a degree-d pseudo-distribution µ over {0, 1}n. By
Exercise 18, this set has a separation algorithm with running time
nO(d). Using the ellipsoid algorithm, we can approximately minimize
the linear function y 7→ 〈v, y〉 over all y ∈ Md also in time nO(d).
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The different views of pseudo-distributions

Pseudo-distributions are not very complicated as a mathematical
objects- they can be simply represented as positive semidefinite ma-
trices. But they are rather subtle to grasp conceptually. (They are re-
lated, though not identical, to quantum states which are also modeled
by positive semidefinite matrices and not easy to grasp conceptually.)
An often useful point of view is to pretend that pseudo-distributions
are actual distributions. This viewpoint can help “predict” certain
properties of pseudo-distributions. For example, pseudo-distributions
satisfy the Cauchy-Schwarz inequality:

21. Theorem (Cauchy-Schwarz for pseudodistributions). If µ is a
degree d pseudo-distribution and P, Q are polynomials of degree at most d/2
then (

Ẽ
µ

PQ
)2
≤
(

Ẽ
µ

P2
)(

Ẽ
µ

Q2
)

(20)

Proof. We may assume that both Ẽµ P2 and Ẽµ Q2 are strictly positive.
(If at least one is zero, the proof is simpler.) By scaling P and Q
by nonnegative scalars, we may further assume without loss of
generality that

Ẽ
µ

P2 = Ẽ
µ

Q2 = 1 . (21)

It remains to prove Ẽµ PQ ≤ 1. Indeed, Ẽµ(P−Q)2 ≥ 0 which means
by linearity that

2 Ẽ
µ

PQ = Ẽ
µ

P2 + Ẽ
µ

Q2 − Ẽ
µ
(P−Q)2 ≤ 2 . (22)

Do all pseudo-distributions correspond to actual distributions?

It turns out that the proofs of many of the inequalities we know and
love, including Cauchy-Schwarz, Hölder and more, boil down to a
sum-of-squares proof, which means that these statements hold not
just for actual distributions but also for pseudo-distributions. In this
light, a natural question to ask is whether perhaps every pseudo-
distribution is an actual distribution. The answer to this question is
negative.

22. Lemma (integrality gap). There exists a degree-2 polynomial
f : {0, 1}n → R that is nonnegative f ≥ 0 but has no degree-2 sum-of-
squares certificate. In particular, there exists a degree-2 pseudo-distribution
µ over {0, 1}n such that Ẽµ f < 0.
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8 Bob Marley and the Wailers, “Three
Little Birds” (1980).

Proof. Consider the following nonnegative function on {0, 1}3,

f (x) = 2−
(
(x1 − x2)

2 + (x2 − x3)
2 + (x3 − x1)

2
)

. (23)

The fact that this function is nonnegative corresponds to the fact that
the maximum cut in a 3-cycle is 2. Consider the degree-2 pseudo-
distribution µ over {0, 1}3 with mean Ẽµ(x) xᵀ = 1

2 (1, 1, 1) and covari-
ance,

Ẽ
µ(x)

xxᵀ −
(

Ẽ
µ(x)

x
)(

Ẽ
µ(x)

x
)
ᵀ =

1
8

 2 −1 −1
−1 2 −1
−1 −1 2

 . (24)

Now,

Ẽ
µ(x)

(x1 − x2)
2 = Ẽ

µ(x)
(x2 − x3)

2 = Ẽ
µ(x)

(x3 − x1)
2 = 3/4 . (25)

Therefore, f has negative expectation under µ,

Ẽ
µ

f = 2− 3 · 3/4 = −1/4 . (26)

The Marley paradigm

It took about 80 years from the time Hilbert showed that polynomials
that are not SOS exist non-constructively until Motzkin came up
with an explicit example, and even that example has a low degree
sos proof of positivity. One lesson from that is that if an inequality
is non-negative and “natural” (i.e., constructed by methods known
to Hilbert—not including probabilistic method), then heuristically
there should be a low-degree sos proof for this fact. A corollary of
this heuristic in the spirit of Bob Marley8:

“If you analyze the performance of an SOS-based algorithm pretending
pseudo-distributions are actual distributions, then unless you used
Chernoff+union bound type arguments, then every little thing gonna
be alright.”

We will use Marley’s corollary extensively in analyzing sos algo-
rithms. There is a recurring theme in mathematics of “power from
weakness”. For example, we can often derandomize certain algo-
rithms by observing that they fall in some restricted complexity
classes and hence can be fooled by certain pseudorandom generator.
Another example, perhaps closer to ours, is that even though the
original way people defined calculus with “infinitesimal” amounts
were based on false premises, still much of the results they deduced
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were correct. One way to explain this is that they used a weak proof
system that cannot prove all true facts about the real numbers, and
in particular cannot detect if the real numbers are replaced with an
object that does have such an “infinitesimal” quantity added to it.
In a similar way, if you analyze an algorithm using a weak proof
system (e.g., one that is captured by a small degree sos proof), then
the analysis will still hold even if we replaced actual distributions
with a pseudo-distribution of sufficiently large degree.

The quadratic sampling lemma

We have seen that not every pseudo-distribution is an actual distri-
bution. However it turns out for every pseudo-distribution µ we
can at least match the first two moments of µ by an actual proba-
bility distribution—albeit over Rn instead of {0, 1}n. The following
lemma formalizes this idea which is related to hyperplane rounding
in approximation algorithms and Gaussian copula in quantitative
finance.

23. Lemma (Quadratic Sampling Lemma). For every degree-2 pseudo-
distribution µ over {0, 1}n, there exists a probability distribution ρ over Rn

with the same first two moments, that is,

Ẽ
µ(x)

(1, x)⊗2 = E
x∼ρ

(1, x)⊗2 . (27)

Moreover, ρ is a multivariate Gaussian distribution.

Proof. Let v = Eµ(x) x and Σ = Ẽµ(x)(x − v)(x − v)T be the formal
mean and covariance of µ. Like for an actual probability distribu-
tion, the covariance Σ of a degree-2 pseudo-distribution is positive
semidefinite. Indeed, for every u ∈ Rn,

〈u, Σu〉 = Ẽ
µ(x)
〈u, x− v〉2 ≥ 0 . (28)

The following randomized procedure outputs a random vector y in
Rn with mean v and covariance Σ:

• choose a standard Gaussian vector g, i.e., the coordinates of g are
independently identically distributed Gaussian variables with
mean 0 and variance 1,

• output the vector y = v + Σ1/2g.

(In the last step, we use that the matrix Σ has a square root be-
cause it is positive semidefinite.) Since E g = 0, the mean of this
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9 The above sampling procedure shows
that such a distribution N(v, Σ) exists
for every vector v ∈ Rn and every
positive semidefinite matrix Σ ∈ Rn×n.

distribution is E y = v. Since E ggᵀ = Id, the distribution has covari-
ance,

E(y− v)(y− v)T = Σ1/2 E ggᵀΣ1/2 = Σ . (29)

The distribution we described is called the Gaussian distribution with
mean v and covariance Σ and is denoted N(v, Σ).9

Pseudo-distributions as Bayesian probabilities

The problem of maximizing a polynomial over {0, 1}n is NP hard
(indeed Max-Cut is a special case of it), and so (assuming P 6= NP) if
we run the sos algorithm with a small (e.g., constant) degree d then
the algorithm should sometimes fail to solve it. In other words, on
input some function f : {0, 1}n → R the sos algorithm might return
a pseudo-distribution µ that will not be an actual distribution over
x’s with f (x) < 0. How do we interpret this pseudo-distribution?
One way to think about it is that the pseudo-distribution captures
the uncertainty of a computationally bounded observer about the
unknown x such that f (x) < 0. Bayesian probabilities are often used
to capture uncertainty even about events that are completely deter-
mined, for example, it might make sense for me to say something
like “the probability that my great-grandfather had blue eyes is 25%”
since even though obviously he either did or didn’t have blue eyes,
the information I have about this fact can still leave me with some
uncertainty.

The fact that we have bounded computational powers means that
we sometimes have uncertainty even about facts that are completely
determined by the information we are given. For example, while
the number 281712357 − 1 is either prime or composite, the authors
(and as far as we know, everyone else) do not know which of the two
cases holds. In fact, the information gathered by the Great Internet
Mersenne Prime search project only allows us to determine that the
probability that this number is prime is roughly 1.46 · 10−6.

Similarly, even if a function f : {0, 1}n → R has a unique x such
that f (x) < 0, this value x might be hard to find, and so we could
have some uncertainty about it. One way to think about the pseudo-
distribution is that it captures this uncertainty, and so a statement
such as Ẽ x17 = 0.7 can be interpreted as saying that, given the
information we have, the probability that x17 = 1 is 0.7.
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What’s next?

The type of questions we are interested in regarding the sos algo-
rithm are the following:

• For what families of problems does the sos algorithm give us the
best-known guarantees? Are there families of problems for which
it is reasonable to conjecture that the sos algorithm is optimal, in
the sense that for any given d, there is no other algorithm running
much faster than nd time that would do better than the degree d
sos algorithm?

• There are some a priori seemingly stronger algorithms and proof
systems, such as the “dynamic sos” proof system. Can we show
natural classes of problems on which sos matches the guarantees
of those seemingly stronger systems?

• Can we use the sos algorithm to solve problems that have eluded
us via other means? In particular, there are some average case
problems arising in machine learning, statistical physics, and other
areas for which the sos algorithm seems promising. There are also
some very fascinating worst-case problems for which we do not
know the sos algorithm’s performance and which resolving could
settle important questions such as Khot’s unique games conjecture.

• Can we obtain a systematic understanding of the sos algorithm’s
performance? Ideally we would have a “creativity free” analysis,
whereby we reduce the question of analyzing the guarantees sos
gives on any particular question to some potentially complicated
or tedious but ultimately doable and non-creative calculations .
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