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1 The reason is that `∞ is the smallest
`p norm of Rm and that `1 is the largest
norm of Rn (when we fix the norm of
coordinate basis vectors).

Grothendieck-type inequalities

Suppose A ∈ Rn×m is a linear operator from Rm to Rn represented
by an n-by-m matrix. An important parameter of A is its operator
norm, the smallest number c ≥ 0 such that ‖Ax‖ ≤ c · ‖x‖ for all
x ∈ Rm. This quantity depends on the choice of norms for the in-
put and output spaces of operator—Rm and Rn in our case. The
most common choice is the Euclidean norm. In this case, the oper-
ator norm is simply the largest singular value of A, which can be
computed in polynomial time.

Suppose that we wanted to bound the maximum operator norm of
A over all choices of `p norms for Rm and Rn—fixing the norms of
the coordinate basis vectors to be 1. It turns out that the worst choice
of norms is `∞ for the input space Rm and `1 for the output space
Rn.1 We let ‖A‖∞→1 denote the operator norm of A for this choice of
norms for the input and output space,

‖A‖∞→1 = max
x∈Rm−0

‖Ax‖1
‖x‖∞

. (1)

Unlike the largest singular value, computing this operator norm is
NP-hard. However, as we will see, there exists a polynomial-time
algorithm for this norm that achieves a constant approximation factor
(the constant is bigger than 1

2 ).

The following lemma shows that ‖A‖∞→1 is the optimum value
of a quadratic optimization problem over the hypercube. For conve-
nience, we work with the set {±1}n instead of {0, 1}n.

1. Lemma (quadratic optimization vs operator norm). For every
matrix A ∈ Rn×m,

‖A‖∞→1 = max
x∈{±1}m ,y∈{±1}n

〈Ax, y〉 . (2)

Proof. The lemma follows from the fact that for every vector z ∈ Rn,
the maximum value of 〈z, y〉 over all y ∈ {±1}n is equal to ‖z‖1.

One application of the ∞-to-1 norm is to approximate the cut norm
of a matrix A = (aij) ∈ Rn×m, which is the maximum of ∑i∈S,j∈T aij

over all subsets S ⊆ [n], T ⊆ [m].

2. Exercise. Prove that for every matrix A, the cut norm of A is
between ‖A‖∞→1/4 and ‖A‖∞→1.

Alexander Grothendieck (1928–2014) was one of the leading math-
ematicians of the 20th century, transforming the field of algebraic
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geometry. One of his early works established a result he called “the
fundamental theorem in the metric theory of tensor products” and
is now known as Grothendieck’s inequality. This inequality has found
applications in a diverse variety of fields including Banach spaces,
C∗-algebras, quantum mechanics, and computer science. The surveys
of Pisier [2012] and Khot and Naor [2012] are good sources for the
amazing arrays of applications.

Grothendieck’s inequality is equivalent to the following theorem
about degree-2 pseudo-distributions (see Alon and Naor [2004]).

3. Theorem (Grothendieck’s inequality). There exists an absolute
constant KG such that for every matrix A ∈ Rn×m and degree-2 pseudo-
distribution µ : {±1}n × {±1}m → R,

Ẽ
µ(x,y)

〈Ax, y〉 ≤ KG · max
x∈{±1}m ,y∈{±1}n

〈Ax, y〉 . (3)

Up to now we have defined only pseudo-distributions over {0, 1}`
for some ` ∈ N, but here it is convenient to work with pseudo-
distributions defined over {±1}`. We can simply use the linear map
x 7→ 1− 2x to map one set to the other, but it is also easy to define
directly the notion of pseudo-distributions and pseudo-expectations
over the signed Boolean cube {±1}`. The only difference is that
when reducing a general polynomial to a multilinear one, in the
{±1} case we use the identity x2

i = 1 instead of x2
i = xi as we did in

the {0, 1} case.

By the duality between pseudo-distributions and sos certificates,
Grothendieck’s inequality is also equvialent to the statement that the
polynomial KG · ‖A‖∞→1 − 〈Ax, y〉 has a degree-2 sos certificate.

The smallest value of KG satisfying this inequality is known as
Grothendieck’s constant. Computing the exact numerical value of this
constant is a longstanding open problem, though we know that it is
around 1.7. In 1977, Krivine proved that KG ≤ π

2 log(1+
√

2)
∼ 1.782..

and conjectured that this bound is tight. However, this conjecture
was disproved by Braverman et al. [2011] . Raghavendra and Steurer
[2009] showed that one can compute KG up to accuracy ε in time
double exponential in 1/ε.

We show a proof of Grothendieck’s inequality due to Krivine (see
Alon and Naor [2004]).

Proof. As in the proof for Max Cut, we may assume that µ has
mean 0. We will show that there are joint Gaussian vectors ξ, ζ such
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that
Ẽ

µ(x,y)
xyᵀ = KKrivine · E

ξ,ζ
(sign ◦ξ)(sign ◦ζ )T (4)

where KKrivine is an absolute constant to be determined later. (Here,
(sign ◦ξ) ∈ {0, 1}m and (sign ◦ζ) ∈ {±1}n denote the vectors
obtained by taking the signs coordinate-wise for ξ and ζ.) Equation
(4) implies the theorem because

Ẽ
µ
〈Ax, y〉 = Tr A Ẽ

µ
xyᵀ

= KKrivine · Tr A E
ξ,ζ
(sign ◦ξ)(sign ◦ζ )T

= KKrivine · E
ξ,ζ

〈
A(sign ◦ξ), (sign ◦ζ)

〉
≤ KKrivine · ‖A‖∞→1 .

(5)

It remains to show the existence of Gaussian vectors such that (4)
holds. We will choose the Gaussian vectors such that the diagonals of
the covariances E ξξᵀ and E ζζᵀ are all ones. Then, as in the proof for
Max Cut (also see Exercise 4),

E
ξ,ζ
(sign ◦ξ)(sign ◦ζ )T = 2

π · arcsin ◦(E ξζᵀ) , (6)

where we apply the arcsin function entry-wise to the matrix E ξζᵀ.
Therefore, our goal is to choose the distribution of ξ, ζ such that

sin ◦
(

c · Ẽ
µ

xyᵀ
)
= Ẽ ξζᵀ , (7)

where c = π
2KKrivine

and we apply the sin function again entry-wise. By
Exercise 9 below, the following matrix is positive semidefinite(

sinh ◦
(
c Ẽµ xxᵀ

)
sin ◦

(
c Ẽµ xyᵀ

)
sin ◦

(
c Ẽµ yxᵀ

)
sinh ◦

(
c Ẽµ yyᵀ

)) (8)

It follows that we can choose (ξ, ζ) to be Gaussian vectors with the
above matrix as covariance. Recall that we required the entries of
ξ and ζ to have variance 1. Since Ẽµ xxᵀ and Ẽµ yyᵀ are all ones on
their diagonals, this requirement translates to the condition sinh(c) =
1. The solution to this equation is c = sinh−1(1) = ln(1 +

√
2). There-

fore we can choose KKrivine = π
2 ln(1+

√
2)
≤ 1.783 for the conclusion of

the theorem.

Exercises to complete Krivine’s proof of Grothendieck’s inequal-
ity

The following exercises ask you to fill in some details for Krivine’s
proof of Grothendieck’s inequality.



Boaz Barak and David Steurer 4

2 Hint: Look up the Taylor-series
expansion of the sin and sinh functions.

4. Exercise (Grothendieck’s identity). Show that for every ρ ∈ R with
−1 ≤ ρ ≤ 1

E
s,t∼N (0,1)

sign s · sign
(

ρ · s +
√

1− ρ2 · t
)
= 2

π arcsin ρ . (9)

5. Exercise (Hadamard product of matrices). For every two matrices
M, N of the same dimension we define the Hadamard product of M
and N, denoted as M� N, as the matrix H where Hi,j = Mi,jNi,j for
all i, j. Prove that if M and N are psd then so is M� N.

6. Exercise (polynomials applied to psd matrices). Let p be a uni-
variate polynomial with nonnegative coefficients in the monomial
basis. Show that for every positive semidefinite matrix M ∈ Rn×n,
the matrix N = p ◦ M with entries Ni,j = p(Mi,j) is also positive
semidefinite.

7. Exercise (polynomials applied to block psd matrices). Let p =

∑i pixi be a univariate polynomial and let p+ = ∑i|pi|xi be the
corresponding polynomial with only nonnegative coefficients. Show
that for every 2-by-2 block psd matrix

(
A B
Bᵀ D

)
, the following matrix is

also positive semidefinite,(
p+ ◦ A p ◦ B
p ◦ Bᵀ p+ ◦ D

)
. (10)

8. Exercise (sin and sinh Taylor series). Show that there exists a
sequence of univariate polynomials {p(k)}k∈N that converges point-
wise to the sin function (i.e., limk→∞ p(k)(x) = sin x for every x ∈ R).
Show that the corresponding polynomials {p(k)+ }k∈N with nonnega-
tive coefficients in the monomial basis converges point-wise to the
sinh function.2

9. Exercise (sin and sinh applied to block psd matrices). Show that
for every 2-by-2 block psd matrix

(
A B
Bᵀ D

)
, the following matrix is also

positive semidefinite, (
sinh ◦A sin ◦B
sin ◦Bᵀ sinh ◦D

)
. (11)

More general Grothendieck-type inequalities

We have used crucially the fact that we need to optimize on disjoint
sets of variables x1, . . . , xn and y1, . . . , yn in the proof above, since
we only needed to fix the two off-diagonal blocks of the covariance
matrix of the Gaussian we used, and so had freedom in choosing
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the two diagonal blocks in a way to help make this matrix psd. One
can ask more general questions of looking at maximizers of the form
x>Ax where x ∈ {±1}2n and A is an arbitrary matrix whose support
(i.e., non zero entries) is contained in some graph H. The Grothendieck
constant of H is the maximum over all such matrices of the ratio
between the pseudo-distribution and actual value. The standard
Grothendieck value corresponds to the case that H is bipartite but one
can study the questions for other graphs as well. For some graphs
H, the Grothendieck constant corresponding to H might not be
an absolute constant but can depend on H. Specifically, Alon et al.
[2005] show that there are some absolute constants c, C such that the
Grothendieck constant of H always lies in [c log ω(H), C log χ(H)]

where ω(H) denotes the clique number of H and χ(H) denotes the
chromatic number of H.
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