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1 We will not make much distinction
between algorithms whose goal is to
compute the value and algorithms
whose goal is to find the actual max-
imizing assignment. In practice most
algorithms that are aimed at the former
also achieve the latter.

2 The reason for calling these pa-
rameters c and s is that c stands for
“completeness” and s stands for “sound-
ness”. These names make the most
sense in the context of hardness reduc-
tions, as we’ll see below.

From integrality gaps to hardness

We have seen how we can transform computational hardness re-
sults into integrality gaps. In a surprising work Raghavendra [2008]
showed a transformation in the other direction. Namely, he showed
how to take every constant degree integrality gap for a constraint
satisfaction problem, and obtain a hardness of approximation result for
the same problem with (essentially) the same parameters. Alas, there
is one major fly in this ointment: the result is based on Khot’s Unique
Games Conjecture, on whose veracity there is no consensus.

We will discuss the Unique Games Conjecture, and the evidence
for and against it, later in this course, but regardless of whether the
conjecture is true or not, the techniques and ideas behind Raghaven-
dra’s result are beautiful, and have already found additional appli-
cations. One promising sign is a result of Chan [2013] , who gave a
hardness of approximation result based merely on P 6= NP which
matches the parameters (and is inspired by) the degree Ω(n) integral-
ity gap for “nice subspace predicates” we saw before. However, at the
moment we still don’t know of a generic transformation along these
lines.

The Max Cut problem we saw before is an example of a Constraint
Satisfaction Problem (CSP). In such a problem, the instance I is given
a list of functions f1, . . . , fm : Σn → {0, 1}, where Σ is some finite
set, and the goal is to find the assignment x∗ ∈ Σn that maximizes
the fraction of i’s such that fi(x∗) = 1. This fraction is known as the
value of the instance I, and is denoted as val(I).1 For every subset C
of functions that that map finite sequences of elements in Σ to {0, 1},
we define CSP(C) to be the class of CSP’s where all constraints are
in C. One particular case of interest is when C the set C(P) where P
is a finite set of functions mapping {0, 1}k to {0, 1}, and a function
f : Σn → {0, 1} is in C(P) if f is obtained by applying some function
P ∈ P to k of its input symbols. The corresponding class of CSP’s is
denoted as CSP(P).

For 1 ≥ c > s ≥ 0, a (c, s)-approximation algorithm for a class
CSP(C) is an algorithm that outputs 1 on every I ∈ CSP(C) such that
val(I) ≥ c and outputs 0 on every I such that val(I) ≤ s.2 A (c, s)
basic integrality gap for a class CSP(C) is an instance I = ( f1, . . . , fm) ∈
CSP(C) such that val(I) ≤ c but there is a pseudo-distribution µ of
degree the maximum of deg fi over {0, 1}n such that Ẽµ ∑m

i=1 fi = m.
Raghavendra [2008] proved the following remarkable result:

1. Theorem (Hardness of approximation from integrality gaps).
Assuming Khot’s Unique Games Conjecture and P 6= NP, for every
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c > s and set P of functions mapping Σk to {0, 1}. If there exists a (c, s)
degree 2|Σ|k integrality gap for CSP(P) then for every ε > 0 there is no
polynomial time (c− ε, s + ε) approximation algorithm for CSP(P).

Note: The actual semidefinite program that Raghavendra considered,
which he called Basic SDP is weaker (i.e., contains fewer constraints)
than degree 2|Σ|k sos, but stronger than degree 2 sos, though is ar-
guably “morally” closer to degree 2 than degree 2|Σ|k. Indeed, Basic
SDP is a degree two sos relaxation of the maximization problem
phrased in a somewhat different “constraint vs variable” formulation.
In particular for the Max Cut problem, the Basic SDP formulation and
the standard degree 2 sos formulation we saw before are equivalent.

While it will not matter for our discussion beow, for the sake of com-
pleteness we describe the Basic SDP formulation for a general CSP
I = ( f1, . . . , fm) over alphabet Σ. It is the degree 2 sos relaxation for
the problem of maximizing a polynomial F over {0, 1}n|Σ|+m|Σ|k where
we use the 0/1 variables {xi,σ}i∈[n],σ∈Σ and {y`,~σ}`∈[m],~σ∈Σk . Intuitively,
xi,σ = 1 iff the ith variable of the original assignment is σ, and y`,~σ = 1
iff the k variables involved in the `th constraint have the assignment~σ.

It is not too hard to come up with a quadratic polynomial F in
these variables such that the maximum of F(x, y) over all (x, y) ∈
{0, 1}|Σ|n+m|Σ|k will equal the maximum fraction of satisfiable con-
straints to the original CSP by an assignment in Σn. We leave verifying
this as an exercise.

Since max cut is a particular instance of constraint satisfaction
problem with degree two constraints, combining this with Feige-
Schechtman’s result we saw in the last lecture, we get the following
theorem as a corollary:

2. Theorem (Hardness of approximation for max cut). Let αGW ∼
0.878 and xGW ∼ 0.845 be the constants computed in the previous lecture.
Assuming Khot’s Unique Games Conjecture and P 6= NP, then for every
ε > 0 there is no polynomial time (xGW − ε, αGW xGW + ε) approximation
algorithm for CSP(P).

Theorem 2 was actually proven by Khot et al. [2004] before Theo-
rem 1 and served as an inspiration to Raghavendra [2008] ’s result.
We will only show the proof of Theorem 2, in fact, only sketch it at
that while indicating how it can be further generalized.

The Unique Games Conjecture

The Unique Games Conjecture was proposed by Khot [2002] . It con-
cerns the following constraint satisfaction problem:
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3. Definition (Unique Games). For every 1 ≥ c∗ > s∗ ≥ 0 and ` ∈ N,
the UGc∗ ,s∗(`) is the problem of distinguishing whether an instance of
CSP(P`) has value at least c∗ or value at most s∗, where P` is the set
of 2-ary predicates on alphabet [`] defined as:

P` =
{

P : [`]2 → {0, 1}
∣∣∣ ∀x ∈ [`]∃ unique y ∈ [`]s.t.P(x, y) = 1

}
.
(1)

The conjecture is the following:

For every ε > 0, there exists some ` such that for UG1−ε,ε(`) is NP
hard.

The requirement of completeness less than 1 is inherent, as the
following exercise shows:

4. Exercise. For every `, s∗ < 1, give a polynomial-time algorithm for
the UG1,s∗(`) problem.

Tight hardness of approximation for Max Cut

We will not show the full proof of Theorem 2 (let alone Theorem 1),
but we will illustrate some of the ideas behind it. A priori it seems
very strange that a result like that could be proved. A (c, s) integral-
ity gap is some finite mathematical object with particular properties.
How can the existence of such an object prevent the existence of an
efficient algorithm?

The idea is that such an integrality gap can be used as a gadget
in a reduction from the (conjectured to be) hard computational
problem UG1−ε,ε(`) into an instance of CSP(P). The Unique Games
conjecture posits that for some particular values c∗ = 1− ε and s∗ = ε

it is computationally hard (specifically NP-hard) to distinguish, given
an instance I of UG1−ε,ε(`), between the case that val(I) ≥ c∗ and
the case that val(I) ≤ s∗. The reduction we are looking for is some
efficient map ϕ mapping an instance I of UG1−ε,ε(`) into an instance
ϕ(I) of CSP(P) satisfying:

• Completeness: If val(I) ≥ c∗ then val(ϕ(I)) ≥ c− ε.

• Soundness: If val(I) ≤ s∗ then val(ϕ(I)) ≤ s + ε

We will not give a full description of the reduction, but will only
mention some of its key features. Recall that the alphabet of I in
UG1−ε,ε(`) is the set [`] = {1, . . . , `}. The reduction will use as a
gadget an error correcting code ECC mapping [`] to {0, 1}L for some
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L, and will map an instance I of Π that uses n variables into a max-
cut instance I′ on nL vertices that are divided into n L-sized blocks.
If x ∈ [`]n is an assignment that achieves value at least c∗ for the
instance I, then we obtain a bipartition with cut value c − ε for I′

by cutting the L variables of the ith block according to the L-length
string ECC(xi). The particular code we will use is known as the
long code. It is the map ECC : [`] → {0, 1}L for L = 2`, for every
i ∈ [`] and w ∈ {0, 1}`, we define ECC(i)w = wi. It will be more
convenient for us to think of (potentially corrupted) codewords of
ECC as functions f mapping {0, 1}` to {0, 1}, where the actual (i.e.,
non corrupted) codewords correspond to the dictator functions of the
form fi(w) = wi.

The Max-Cut gadget desiderata

To show that our reduction is sound, we need to show that given any
bipartition f : {0, 1}nL → {0, 1} of the vertices of I′ that cuts more
than s + ε fraction of the edges, we can decode it into an assignment
x ∈ [`]n that satisfies at least an s∗ fraction of the original constraints
of I. It turns out that the key property is to show a way how to
decode the restriction of the bipartition f to any particular block
into a particular symbol in Σ. Informally, the “gadget” we need for
the reduction, is a graph H with vertex set V = {0, 1}` having the
following properties:

• Completeness: For every i ∈ [`], the cut value of the bipartition
corresponding to the dictator fi is at least c− ε.

• Soundness: For every f : {0, 1}` → {0, 1} that is “far” from
a dictator function, the value of the cut corresponding to the
bipartition f is at most s + ε.

Constructing a gadget from an integrality gap

Roughly speaking, the idea behind the construction is as follows.
Recall that the (xGW − o(1), αGW xGW + o(1)) integrality gap was
obtained by taking the graph G whose vertices are the vectors in the
d dimensional unit sphere and we put an edge between two vertices
u, v ∈ Rd if 〈u, v〉 ≤ ρGW + ε for ρGW = 1− 2xGW . Our gadget graph
H over the Boolean cube {0, 1}` will be inspired by G, in the sense
that we connect w, z ∈ {0, 1}` if their correlation (i.e., the fraction
of coordinates they agree on minus the fraction of coordinates they
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3 In Fourier analysis parlance, this is
known as the property of f having small
maximum influence.

4 In fact the papers were in the reverse
order. The motivation behind (Mossel
et al. [2005]) was precisely to complete
the soundness analysis of (Khot et al.
[2004]).

disagree on) is at most ρGW + ε. Let us now try to analyze this graph
on an intuitive level.

The completeness property is fairly straightforward. Indeed, if
f : {0, 1}` → {0, 1} is a “dictator” function of the form f (w) = wi

then for a random edge (w, z), the probability that wi 6= zi is at least
1/2 + (ρGW + ε)/2 = xGW + ε/2.

The soundness property is much subtler, not least because we did
not even define what being “far from a dictator” means. Let us take
one particular example. Suppose that f : {0, 1}` → {0, 1} is a linear
threshold function of the form f (w) = 1 if ∑ αiwi > τ and f (w) = 0
otherwise, for some coefficients α1, . . . , α`, τ. If all the α coefficients
but one are zero then f is a dictator, and so one way of saying that f
is “far” from being a dictator is that all the coefficients are of roughly
equal magnitude (say the same up to some constant).3 In this case
we can use the central limit theorem to argue that ∑ αiwi is roughly
the same as a normal variable with the same mean and variance. So,
the probability that for a random edge (w, z), the bipartition f will
cut (w, z) in the sense f (w) 6= f (z) is essentially the same as the
probability that we can distinguish between two ρ-correlated normal
variables, but by the same calculations that we’ve done before, this
will be at most arccos(ρ)/π which in our case would be at most
αGW xGW .

More generally, to analyze the soundness of this gadget, Khot et al.
[2004] used a powerful generalization of the central limit theorem
known as the invariance principle (Mossel et al. [2005]).4 Roughly
speaking, the invariance principle means that if f is “far” from a dic-
tator in some technical sense, then it cannot distinguish between the
case that its input comes from the 0/1 Bernoulli distribution or the
Gaussian distribution with the same moments. But then if f would
have too good of a cut value, that would refute the isoperimteric
result that underlies the integrality gap. The invariance principle can
be thought of as an inverse theorem, saying that only “nice” functions
(i.e., dictators or functions close to them) can and do distinguish
between the sphere (or Gaussian space) and the cube. This completes
our (admittedly quite partial and sketchy) outline of the proof.

What’s unique about unique games?

We have not seen the full reduction, and so can not at this point
truly appreciate why it needs to rely on the unique games conjecture.
Indeed, the label cover problem, which is superficially quite similar

https://en.wikipedia.org/wiki/Central_limit_theorem
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to unique games, is in fact NP-hard (see Exercise 5 below). A priori
one could perhaps hope that there is a “minor modification” of this
reduction so it can handle the case where the original constraint
satisfaction problem instance I is “non unique” and hence be based
merely on P 6= NP.

On a technical level, the current proof relies on the uniqueness
property to reduce the task of verifying that the original constraints
were satisfied to the “code checking” task of verifying that any
assignment that has good value for the gadget is related to a true
codeword. One could hope to get a more sophisticated gadget that
would enable such “consistency checking” as well. Indeed, the
current best candidate approaches to proving the unique games
conjecture boil down to coming up with such gadgets. There are
some obstacles to such an approach, showing that it would require
more significant modifications. First, there is a sub-exponential
time algorithm for unique games (Arora et al. [2010]) which implies
that any such reduction based on the label cover problem (which is
believed to be exponentially hard) would need to use some kind
of “powering” step with a polynomial blow up the instance size in
addition to any gadget. It also shows that there is a sense in which
the Unique Games problem is qualitatively easier than Label Cover.

Also, the relation between gadgets and integrality gaps is not
yet fully understood. For example, while the current gadgets are
based on degree two integrality gaps, it turns out that they are
inherently not integrality gaps for higher degree, as the invariance
principle itself (or, more accurately, close variants of it) has a constant
degree sum of squares proof (Barak et al. [2012]). We do not know
whether it means that a gadget whose soundness proof is based on
the invariance principle cannot be used to obtain such NP hardness
reductions.

We will return to the Unique Games Conjecture later in this course.
Given current research, it seems that understanding its truth is
closely coupled with the question of understanding the extent of the
power of the sum of squares algorithm.

5. Exercise (NP hardness of non-unique games). One variant of the
PCP Theorem is that for every ε > 0 there is some k and some family
P of predicates on {0, 1}k such that it is NP hard to distinguish
between CSP(P) instances of value at most ε and CSP(P) instances
of value at least 1− ε. Show that you can reduce the arity k of the
constraints to 2, at the cost of increasing the alphabet. That is, show
that for every k and such family P of predicates over {0, 1}k, there
is some ` and a family P ′ of predicates over [`]2, and an efficient
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5 Hint: Given an instance I with n
variables and m k-ary constraints, the
reduction will create an instance I′

with alphabet size ` = 2k and n + m
variables x1, . . . , xn, y1, . . . , ym where the
variables x1, . . . , xn are as in the original
constraint and the variable yi encodes
the assignment to the k variables
participating in the ith constraint.

reduction R such that for every instance I of CSP(P), R(I) is an
instance of CSP(P ′) satisfiying:

• Completeness: If val(I) ≥ 1− ε then val(R(I)) ≥ 1− 10ε

• Soundness: If val(I) ≤ ε then val(R(I)) ≤ 10ε.

This shows that if we drop the uniqueness constraints on the
constraints on [`]2 in the definition of UG1−ε,ε(`) then the unique
games conjecture becomes a corollary of the PCP Theorem.5
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