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1 Satisfying Ẽ f = α and being sup-
ported on {x : f (x) = α} is not the
same thing in general, but these no-
tions do coincide when α is the global
minimum of f .

2 E.g., x∗ can denote the parameters
of an unknown neural network and
f is the function that minimizes the
total deviation of the predictions of the
candidate network x from the correct
labels on a large number of samples.

The Bayesian interpretation of pseudo-distributions.

Consider a an optimization problem of the form minx∈{0,1}n f (x).
When we run the degree d sos algorithm on this problem, we obtain
the minimum value α ∈ R for which there is a degree d pseudo-
distribution µ such that Ẽµ f = α. Our notation strongly encourages
us to pretend that µ is an actual distribution over x ∈ {0, 1}n such
that f (x) = α.1 Indeed, many properties of pseudo-distributions,
such as satisfying the Cauchy-Schwarz and Holder inequalities, are
most naturally explained by the phenomena of “inheriting” traits of
actual distributions. However, often we have strong reasons to believe
that no such distribution exists, or that if it does, its moments look
nothing like µ’s. How are we to interpret µ in such cases?

Let us elaborate on this a bit more. In many natural settings, the
global minimum of f would be achieved at a single point. For example,
if we think of f as counting the number of violations of some con-
straints or equations, then often these equations are over constrained
in the sense that the number of constraints is large enough to com-
pletely determine the optimum point. In optimization problems
arising from machine learning, x∗ ∈ {0, 1}n could denote the un-
known parameters of the model, and f would be a function derived
from the observed data.2 As we accumulate enough data, eventu-
ally it would completely determine the unknown parameters (with
arbitrarily high accuracy) in a statistical sense. So, if µ was truly sup-
ported on points achieving the global minimum then µ would simply
be the distribution putting all the weight on the single point x∗ which
in particular means that Ẽµ xi = x∗i for every i. But if deriving the
parameters from the observations is computationally hard then we
shouldn’t be able to “read off” x∗ from the expectations and so it will
not hold that Ẽµ xi is equal to either 0 or 1 for all i.

As another example, consider the case where f (x) counts the
number of violations of the constraints of some particular 3SAT
formula ϕ by the assignment x ∈ {0, 1}n. The forumla ϕ is satisfiable
if and only minx f (x) = 0 but since this problem is NP hard there
should exist some f ’s of this form such that minx f (x) > 0 but
for every constant d there is a d pseudo-distribution µ such that
Ẽµ f = 0. Thus this pseudo-distribution pretends to distribution
over elements (i.e., satisfying assignments) that don’t exist. This is why
we sometimes refer to such pseudo-distributions as akin to being
supported over “unicorns”.
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3 Obviously we cannot do justice to
this deep issue in these lecture notes.
Two classic books on this topic from
the frequentist and Bayesian viewpoint
respectively are Feller [1968] and Jaynes
[2003] . This talk by Michael Jordan
is also a good starting point for this
discussion.

Bayesian probability theory

“The probability of winning a battle” . . . has no place in our theory . . .
because we cannot think of a collective to which it belongs. The theory of
probability cannot be applied to this problem any more than the physical
concept of work can be applied to . . . the “work” done by an actor reciting his
part. Richard Von Mises, 1928

The theory of inverse probability is founded upon an error, and must be wholly
rejected, Fisher, 1925

If anyone wishes to study the properties of frequencies in random experiements
he is, of course, perfectly free to do so; and we wish him every success. But . . .
why does he insist on appropriating the word “probability” which had already
a long-established and very different technical meaning? E.T. Jaynes, 1978

I am unable to see why requires us to interpret every probability as a frequency
in some random experiment; particulary when . . . probabilities appearing in
most problems are . . . frequencies only in an . . . imaginary universe invented
just for the purpose of allowing a frequency interpretation., E.T. Jaynes, 1976

“The terms and describe the various degrees of rational beliefs about a proposi-
tion . . . All propositions are true or false but the knowledge we have of them
depends on our circumstances.” John Maynard Keyenes, 1921

What kind of a probability theory would allow you to assign a
value different than 0 or 1 to an event that clearly either happened
or not? It turns out that this is related to a longstanding question in
the philosophy of probability and in particular to the debate between
the Bayesian and Frequentist interpretation of probability.3 Probability
theory initially arose in the 17th century from Pascal’s study of
gambling. The concern there was how to make the best possible
bets. Making bets (like investing in stocks) is less about the inherent
uncertainty of the outcome and more about our information about this
outcome: different bettors have different knowledge about the horse,
team, company, or whatever we want to bet on. Indeed probability
theory, as was studied before the 19th century, was mostly based on
the viewpoint of the observer, which generally can be subjective but
in some cases, such as tossing a die, essentially all observers have the
same information. That is, for all observers all six sides are symmetric
which suggests assigning a probability of 1/6 for each particular
outcome. This idea, which is known as the Principle of Indifference
is at the cornerstone of classical probability theory as originated by
Bernoulli and Laplace and allowed them to argue even about the
probabilities of events that do not come from a well defined sample
space such “the probability that the sun will rise tomorrow”.

However in the late 19th and 20th century, researchers such as
Fisher, Neyman and Pearson found the symmetry/subjective based

http://videolectures.net/mlss09uk_jordan_bfway/
https://en.wikipedia.org/wiki/Principle_of_indifference
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4 In particular the application of prob-
ability theory to events that are not
repeatable experiments can sometimes
lead to somewhat unsettling results
such as the so called “doomsday ar-
gument” by which one argues that
humanity is likely not to survive in
similar form for an extended period of
time. This is because about 100 billion
people have ever born so far and if
you assume a uniform prior on the
person you happened to be among all
the people that ever existed or will exist,
then this latter total should not be much
more than 200 billion.

5 This example also shows the impor-
tance of deciding on the test to perform
in advance: clearly any particular
outcome of the five coin tosses has
probability 2−5 and so the mere fact
that the outcome was “unlikely” is no
evidence that the coin wasn’t fair.

6 One analogy is to consider the prob-
lem of trying to decide on the merits
of a legal case. The Bayesian approach
would be to take all the possible infor-
mation and beliefs we have access to
into account and then make the best
possible prediction. The Frequentist
approach is to define rigorous “rules
of evidence” that may sometimes not
allow us to derive the truth, but can be
shown to be correct most of the times.
One can see that the Bayesian approach
is more appropriate if we are interested
in making a subjective judgement in a
“one off” case that is as accurate as can
be given our prior knowledge and the
data we have, while the frequentist ap-
proach is better suited for deciding on
procedures that will allow us to reach
some mutually agreed upon objective
conclusions in many cases.

approach to probability lacking in rigor, and have moved to the
sample space or frequentist approach which is how we typically learn
probability in mathematics today.4

In this approach, a probability distribution is defined by a function
µ that assigns to any element x in some sample space S some probabil-
ity µ(x) ∈ [0, 1] (where these numbers sum, or integrate, to 1), and
the probability of some event A is obtained by summing up µ(x) for
all x ∈ A.

The frequentist viewpoint is particularly well suited for hypothesis
testing. This is the setting where we have some hypothesis H0 (known
as the “null hypothesis”) and can set up an experiment that corre-
sponds to a sample space in which if H0 is true then the probability
that some event A occurs is at most 1/2. If we then repeat the exper-
iment k times, and in all the cases the event A occurs, then we can
decide that H0 has been “refuted” and we would be wrong at most
a 2−k fraction of the times. The value 2−k is known as the “p-Value”
and in many scientific settings it is set to be 0.05. For example, if we
are given a coin and our hypothesis is that it is a fair coin, then if we
toss it 5 times and check if we got all heads then, if so, we can con-
clude that it is not a fair coin with a p-value of 1/25 = 1/32 ∼ 0.03.5

This means that if we use this as our standard test for fairness of
coins then the frequency in which we would make an error calling a
coin unfair when it is fair would be at most 1/32.

Indeed, for frequentist statisticians, probability does not make sense
if we can’t set up a potentially repeatable experiment with well de-
fined sample space. Note that the frequentist outlook accepts the fact
that sometimes (indeed up to a p fraction of the times, even if other
sources errors are accounted for) we will come to the wrong conclu-
sion. The frequentist outlook is well suited for experiment design in
science, in the sense that it is not about using all available information
to deduce whether or not the hypothesis is true, but rather about
designing an experiment that can be rigorously analyzed to give
evidence about its truth. If we had to bet on the hypothesis’ truth, we
might want to try to use more of the information to get the best pos-
sible estimate for its likelihood, but the frequentist approach is not
designed to achieve a betting strategy to make the best possible guess
using the given data. Rather it is about designing an experiment
that would gather more data until we can make a high confidence
prediction.6

Not all situations in which we want to apply probability, whether
it is betting, investing, or making decisions, fall cleanly into the
frequentist framework. Sometimes we do need to make some predic-

http://www.prb.org/Publications/Articles/2002/HowManyPeopleHaveEverLivedonEarth.aspx
https://en.wikipedia.org/wiki/P-value
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tions outside a controlled experimental environment, and we want to
do the best job we can with the data we have. These kind of “messy”
situations are occurring more often in modern applications and have
led to a sort of partial resurgence of the “subjective”/“betting” view
of probability theory, which is now commonly known as Bayesian
probabilities. The reason for the name Bayesian is that such calcula-
tions almost always rely on Bayes’ theorem which states that if you
made some observation A, then the probability you should assign to
an unknown B should conditioned on this observation should be

P[A ∩ B]/ P[A] (1)

In the context of subjective or betting probabilities, one initially
has a prior distribution µ over the set of possible outcomes, and then
when we learn that some event A occurred and we need to make a
bet on B then we use Eq. (1) to derive the odds.

Note that in the context of betting, it may make perfect sense to
give odds that do not correspond to zero or one probabilities even to
events that have been fully determined. For example, if I had to bet
on whether my great great grandfather had blue eyes, I would proba-
bly try to estimate this probability based on some prior estimate for
the prevalence of blue eyes, adjusting it based on observations of the
eye color of his descendants. However, clearly he either had blue eyes
or didn’t, and so this probability is really due to my ignorance rather
than to any inherent unpredictability of this event. More commonly,
whenever we assign probabilities to events such that “X will win the
upcoming election” or “company Y will perform well in the stock
market”, there isn’t any well defined sample space out of which this
event is drawn out of repeated experiments. Rather the way to inter-
pret these probabilities is that these represent the best odds we can
give to those events given the information at our disposal.

A Bayesian and a frequentist go to the race tracks

The key philosophical difference between Bayesians and Frequentists
is whether the probability of an event A correspond to the beliefs of
an observer on the likelihood of A or to the frequency that A would
occur in repeated identical but independent experiments. What
is more interesting to us is how this philosophical is manifested
mathematically.

Suppose that Betty the Bayesian and Frida the frequentist go to the
horse race tracks where they can bet on various outcomes of a horse

https://en.wikipedia.org/wiki/Bayes%27_theorem
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7 The reliance on a subjective prior
might make us uncomfortable, but
note that in most cases the choice of
the model for X (i.e., the distribution
p(X|θ)) is already subjective as well.
In practice people often do the equiv-
alent of “looking for a coin under the
streetlight” and change the model
so it becomes more computationally
tractable.

8 Betty’s prices do satisfy average case
calibration in the sense that if θ is
sampled from Betty’s prior D and then
x, y are sampled conditioned on θ then
the expectation of ΦBetty(h) (which is a
function of y) would be the same as the
expectation of h(x).

race (who will come first, what time it will take, the gap between
first and second place etc. etc.). We can model the outcome of such a
race as a random variable X that is sampled from some distribution
p(X|θ) where θ is some set of (unknown) parameters on the inherent
abilities of the horses, jockeys, etc.. Betty and Frida observe various
partial information (e.g., results of past races, which we can think
of as some random variable Y correlated with X) and then need to
make bets on it. We can think of a “bet” as some function h that
maps X to R, where h(x) is the payout of the bet when the outcome
of X is x. Let’s think of the bettors goal is to come up with prices
ΦBetty(h) and ΦFrida(h) for every potential bet h such that Betty (resp.
Frida) would be willing to either buy or sell the bet h at the price
ΦBetty(h) (resp. ΦFrida(h)). One can see that the best price (that is
guaranteed not to lose in expectation regardless if you buy or sell)
for the bet h would be Ex∼p(X|θ) h(x) but the problem is that we don’t
know θ.

Betty would handle this as follows: she will try to encode all
her prior knowledge and assumptions on the ability of the horses
into a prior distribution D on the possible values of θ.7 Then she
updates this prior based on the observations y to obtain the posterior
distribution D′ = D|Y = y. Betty’s price ΦBetty(h) is the expectation
of h(x) when we sample θ conditioned on y and then x conditioned
on θ. Betty’s price is only as good as the prior she uses, and we have
no guarantee on what her performance would be for arbitrary θ. That
is, there is no no guarantee of calibration betweeh ΦBetty(h) and the
empirical average of h(x) if we were to sample x many times from
p(X|θ).8 But it least Betty’s prices are coherent in the sense that they
correspond to some distribution over the x’s. In particular if for every
x, h(x) ≥ h′(x) then we are guarantees that Betty’s price will for h
will always be at least as large as her price for h′, and so there is no
“dutch book” or “arbitrage” strategy against Betty that is guaranteed
to make money off her regardless of what the value of θ is.

For Frida, the parameters θ and the random variable X play very
different roles. The choice of θ already happened and so from a fre-
quentist viewpoint, there is no sense in assigning it a probability
distribution. Rather Frida will try to come up with some estimate
ΦFrida(h) that is guaranteed to have some calibration in the sense
of a bound on the difference between ΦFrida(h) and Ex∼p(X|θ) h(x)
that holds for every θ from a set Θ of potentially allowable θ’s and
such that if we can think of the data Y as coming from independent
measurements Y1, . . . , Yn then as n goes to infinity this difference
tends to zero. Unlike in the Bayes case, there is no universal prescrip-
tion of how to come up with the frequentist estimate, and so Frida’s

https://en.wikipedia.org/wiki/Streetlight_effect
https://en.wikipedia.org/wiki/Streetlight_effect
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9 This is similar, and related to, the fact
that in mechanism design in economics
by the revelation principle we can
always have a truthful mechanism if
we don’t care about efficiency, but
for efficient mechanisms this is not
necessarily the case ? .

10 The key notion here is that since the
set of pseudo-distributions over pairs
(θ, x) that satisfy the observations y
is convex, we can minimize over it the
convex function corresponding to a
distance from our prior.

focus is on getting some estimation procedure that she can analyze to
rigorously guarantee the calibration property. Since Frida’s estima-
tion procedure might not correspond to taking the expectation of h
under any distribution, it might be incoherent and in praticular there
might be two functions h, h′ such that h(x) ≥ h′(x) for every x but
ΦFrida(h) < ΦFrida(h′). So there could be a “dutch book”/“arbitrarge
strategy” against Frida where we would buy h bets from her and sell
her h′ bets and be guaranteed to make money regardless of the value
of θ.

The discussion so far ignored the question of efficiency. For Frida
requiring the map h 7→ ΦFrida(h) to be efficient restricts the set of
estimation procedures that she can use. For Betty, this is more com-
plicated since this restriction can (and often does) rule out the unique
estimation procedure. In such a case, typically Frida would compute
her estimate using an efficiently sampleable distribution D′ that is
not the true posterior D|Y = y but is hopefully somewhat related
to it. She could obtain D′ by simplifying the model or her prior (i.e.,
in effect “forgetting” some information, such as higher order cor-
relations, that is hard to incorporate in a computationally efficient
manner), or run a random walk type algorithm that would sample
from the true posterior D in the limit, but stop it before it does so.
This may make her estimate even less calibrated than it was before,
but, since it comes from a probability distribution, it would still be
coherent. While for inefficient algorithms, restricting attention to esti-
mation procedures that are based on actual distributions is without
loss of generality, as we’ll see, in the efficient case this can come at
a significant cost.9 In particular, as we will see, it is possible that no
sampleable distributions will match the observations y, and hence
there, by observing y, we could have a “dutch book”/“arbitrage”
strategy that makes money off Betty without any risk.

The sum of squares algorithm can be thought of as some “hybrid”
between the frequentist and Bayesian approach. Like in the Bayesian
case, the sos algorithm is a single algorithm, and we can write an
sos program such that the pseudo-distributions solving it would
correspond to the BAyesian procedure if the degree d goes to infin-
ity.10 However, when we want to have an efficient algorithm, then sos
turns into a frequentist procedure, since rather than coming up with
an actual probability distribution D′ that “approximately” matches
the observations, we come up with a pseudo distribution that exactly
matches them. Since it is a pseudo-distribution, it does not (and
generally will not) satisfy the coherence property, but it would sat-
isfy degree d pseudo coherence in the sense that if there is a degree
d proof that h ≥ h′ then our price for h would always be at least

https://en.wikipedia.org/wiki/Revelation_principle
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11 In the notation above the clique
x would correspond to the hidden
parameters θ, while the graph would
correspond to the observations y.

as large as the price for h′. Moreover, it will also satisfy a degree d
pseudo calibration condition in the sense that if we have a degree d
SOS proof that conditioned on y, for every θ, h(x) ∈ [α, β] then the
estimate will also fall in this interval. We now elaborate on this more,
using another example: that of the clique problem.

Contrasting sos and Bayesian analysis: an example

Consider the following: We are given a graph G on n vertices that
represents some data we have gathered. For example, the vertices
of G might be certain proteins and edges correspond to interactions
between them that have been observed in patients with disease
X. Suppose that we posit that the underlying mechanism of the
disease is captured by a set of k proteins that all interact with one
another. That is, a clique in the graph G, which we represent as a
vector x ∈ {0, 1}n such that ∑ xi = k and xixj = 0 if i is not connected
to j.

Now suppose that we have N different candidate drugs, each of
which will either cure the disease or not depending on the under-
lying mechanism. So we can think of these drugs as N functions
f1, . . . , fN : {0, 1}n → {0, 1} where f`(x) = 1 if and only if drug ` will
cure the disease if its mechanism is x. We now want to understand
which drug is most worthwhile performing an experiment on.

In the classical Bayesian approach we assume that there is some
underlying prior distribution p on pairs (G, x) where x is a k-clique in
G.11 For example, we can take the “maximum entropy” prior that x is
a uniformly random vector in {0, 1}n of weight k, and G is a random
Erdos-Renyi graph where x is “planted” as a clique. Once we observe
G, we then define the posterior distribution p(x|G) = p(x, G)/p(G)

using Bayes’ law. Now we can define the expected utility of drug ` as
Ex∼p(x|G) f`(x).

The problem is of course that we can’t efficiently sample from
this posterior distribution on cliques. In fact, there is not much
unique about this problem- it is very often the case that posterior
distributions are computationally hard to sample from. For this
reason, Bayesian analysts often use efficient approximations for the
posterior. For example, one might sample x from a random walk that
converges to p(x|G) in an exponential number of steps, but stop it
much before convergence happens, or one might use some other type
of algorithm to obtain some approximate distributions. Regardless,
we can abstract this as sampling x by running P(G) where P(·) is
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some efficient probabilistic algorithm, and then estimating the utility
of drug ` as Ex←P(G) f`(x). The problem is that since the clique
problem is NP hard, with very high probability the output of P(G)

will not be a k clique and in fact, we can assume (using standard
hardness of approximation results) that the set corresponding to x
contains at least k/2 non edges. Using this observation, we can find a
set S of about 2n2/k non edges of G such that with probability close to
1 the following event E holds if we sample x from P(G):

E = {∃(i, j) ∈ S s.t. xixj = 1} (2)

Now suppose that there is a drug that succeeds if and only if E
occurs, then while we can plainly see that E will never happen for the
actual posterior, the approximate Bayesian algorithm will think that
the drug succeeds with probability close to 1! Note that this cannot
be fixed by changing the notion of approximate distribution: every
efficient probabilistic model will have the same issues!

The sos approach is different. Rather than producing an actual
distribution that attempts to approximate the true posterior, we produce
a pseudo distribution that exactly matches the low degree statistics of
the posterior that we can easily derive from the data. In particular
the sos pseudo-distribution will satisfy that Ẽ xixj = 0 for every
non edge (i, j) over the graph as well as Ẽ(∑ xi − k)2 = 0, even
though the only actual distributions over {0, 1}n that satisfy this
condition are supported over k cliques. If the graph has a unique
k clique x∗, then the only true distribution supported on k cliques
satisfies E xi = x∗i for every i and so in particular E xi equals either
zero or one. Generally speaking, initially the sos pseudo-distribution
will not satisfy this property, as it will reflect the uncertainty that a
computationally bounded observer has about the clique, but as we
increase the degree parameter d, for every i the value of E xi will
become closer and closer to either zero or one, until eventually it will
converge to x∗i , see the figure below:

For every function f , if our observations imply using a low degree
sos argument that f (x) ≤ α, then our estimate Ẽx f (x) will be at
most α. This yields a strategy that, in analogous way to the optimal
Bayesian posterior, can’t be “easily dutch booked” in the sense that
one could not find f , g such that there is a simple proof that f ≤ g
but Ẽ f > Ẽ g where “simple” is defined as low degree sos. (See
also our discussion on economics below.) As a computationally
bounded strategy, sos can and will be wrong in its predictions, but at
least its consistently wrong within a well defined system of making
inferences, and provides some non trivial rigorous guarantees about
its quality.
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Figure 1: A random graph with a
hidden clique. The sum-of-squares
algorithm maintains a set of beliefs
about which vertices belong to the
hidden clique. Despite learning no new
information, as we invest more com-
putation time, the algorithm reduces
uncertainty in the beliefs by making
them consistent with increasingly
powerful proof systems. Initially the
beliefs have maximum uncertainty and
correspond to the uniform distribution
but they eventually converge on the
correct hidden clique (red edges).
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The economic view of Bayesian probabilities

There is a deep relation between Bayesian beliefs and rational strategy.
The standard way to model an economic agent is as a computation-
ally unbounded entity whose goal is to maximize its expected utility.
This expectation is taken over the beliefs of the agent, which are
based on combining a prior with the observations. Computational
issues arise in economic settings as well.

One natural such setting is in the context of prediction markets (or
stock markets more generally). Suppose there is a marketplace to
place bets on some events A1, . . . , An (for example, event Ai could be
that candidate X wins in the i-th state in an election, or that company
i outperforms its expectations) where each bet will give you one
dollar if the corresponding event materializes. The question of setting
the right price for each of these events is highly non trivial when they
are correlated. For example, if we know that A2 is implied by A1 then
we must set a price for A1 higher than that for A2 as otherwise we
create an arbitrage opportunity (also known as dutch book) to make
guaranteed profit without a risk. Indeed, the non-existence of such
opportunities is a cornerstone of economics known as the Efficient
Market Hypothesis; this can be proven if all participants are unbiased
rational agents but the extent to which it applies in the real world is
a subject of intense debate. However, what if an implication such as
A1 ⇒ A2 is computationally hard to verify? For example, it may be
that both A1 and A2 have some complex dependency structure on
some underlying assets, in a way that the statement A1 ⇒ A2 would
end up being equivalent to some SAT formula being unsatisfiable. In
such a case we cannot expect the prices set by the market to always
respect this implication.

SOS pseudo-distributions can be thought of as ensuring a “no
computationally easy dutch book strategy”. For example, think
of a stock market that is based on some underlying set of events
captured by x ∈ {0, 1}n, and where you can buy for every function
f : {0, 1}n → R, a stock that would pay you f (x) dollars when x is
revealed. An arbitrage or dutch book strategy could arise when there
are two functions such that f (x) ≥ g(x) for every x but the price of
the stock corresponding to f is cheaper than the stock correpsonding
to g. While in general we cannot be guaranteed that there is no such
arbitrage, if we assign the price for the “ f -stock” to be Ẽ f then at
least we know that if the price of the f -stock is cheaper than the price
of the g-stock then there is no short sos proof that f ≥ g.

The existence of arbitrages in markets is an actual issue and there

https://en.wikipedia.org/wiki/Efficient-market_hypothesis
https://en.wikipedia.org/wiki/Efficient-market_hypothesis
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are documented instances of arbitrage opportunities in prediction
markets and stock markets (and there are companies that are spend-
ing immense computational resources in finding them and quickly
exploiting them). In fact, finding and removing arbitrage opportu-
nities is the main algorithmic challenge in creating combinatorial
prediction markets that allow participants to place bets on arbitrarily
complex combinations of underlying basic events, see also Kroer et al.
[2016].

A recent paper Garrabrant et al. [2016] proposes a more general,
Turing machine based, way of defining probabilities/prices for a
“prediction market for mathematical statements” in a way to ensure
that there is no computationally easy arbitrage/dutch book strategy
regardless of the algorithm used to obtain it. Trying to compare the
two approaches, as well as using other algorithmic frameworks as a
source for defining computationally efficient Bayesian probabilities, is
a very interesting research direction.

Other algorithms as a source for Bayesian probabilities.

It is an interesting and yet largely unexplored area to understand
to what extent algorithms other than the sos algorithm give rise to
internally consistent “probabilities” that can be interpreted as describ-
ing the beliefs of computationally bounded agents. When we run an
algorithm for the task of recovering an unknown set of parameters x
from observations y, even if the algorithm is not successful, it might
be possible to interpret its internal state as codifying some partial infor-
mation about x. Some algorithms, such as belief propagation come with
fairly explicit mapping between the internal state and Bayesian prob-
abilities. Similarly algorithms based on Monte Carlo Markov Chains
or statistical-physics inspired algorithms that converge as a certain
“temperture parameter” decreases can be interpreted as getting closer
and closer to the ground truth. Recently, people have been able to
interpret the internal state (i.e. intermediate neurons) of deep neural
networks as encoding certain “beliefs” about the observed data (e.g.,
see Yosinski et al. [2015]).

Computational Bayesian probabilities and cryptography.

People sometimes describe a cryptographic scheme as offering, say,
“128 bits of security”, which roughly speaking means that one could
not break the scheme using much fewer than 2128 computational

https://en.wikipedia.org/wiki/High-frequency_trading
http://www.sigecom.org/ec16/Tutorials/Design-and-Implementation-of-Combinatorial-Prediction-Markets.pdf
http://www.sigecom.org/ec16/Tutorials/Design-and-Implementation-of-Combinatorial-Prediction-Markets.pdf
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operations or with probability much better than 2−128. This does
not necessarily mean that the secret key is 128 bits long, though it
definitely needs to be at least as long as that; for example, the secu-
rity level of 1024 bit RSA encryption system is typically estimated at
about 80 bits (Barker et al. [2007]).

Cryptography is typically most interested in “zero one scenarios”
where one basically learns nothing about the underlying secrets
using much less than 2128 operations and everything after spending
more than that. The notion of pseudodistributions allows us to talk
about “softer” scenarios where one can learn non-trivial information
about the unknown data.

Beyond philosophy: the Bayes-Marley approach for analyzing
SOS

How do we actually use this Bayesian perspective when we design al-
gorithms or lower bounds? The intuition behind this is the following:
while SOS is not coherent (i.e., does not correspond to actual distribu-
tions), it should be hard for any bounded observer to “catch” it being
non coherent (at least up to some small error). So, when we design
SOS based algorithm, we can pretend that these pseudo-distributions
are actual distributions, as long as we limit ourselves to “bounded
reasoning”. Technically “bounded reasoning” corresponds to SOS
proofs of low degree, but in practice it seems that most mathematical
arguments we use in these contexts (except for the important excep-
tion of non constructive techniques such as the probabilistic method)
can be “SOS’ed” with low degree. So, the paradigm for designing
algorithms is:

Pretend you are working with actual distributions, avoid using the probabilis-
tic method, and every little thing is going to be alright

When designing lower bounds we need to construct pseudo distri-
butions. These are not actual distributions, but it should not be easy
for bounded observers to “catch” us in a discrepancy. So we need to
respect any correlations that would be possible to bounded observers.
That is, our approach is

If you can prove that the moments of a true posterior would have to satisfy
property P, you’d better ensure that your pseudo distribution satisfies P as
well.

The nice thing about this that often the properties that a bounded
observers can ascertain essentially fix the choice of the pseudo-
distribution, and hence all that is left is the (often highly non trivial)
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task of proving that this choice satisfies the pseudo-distribution
constraints.

At the moment this might seem somewhat vague and abstract, but
we will see actual examples of both upper and lower bounds using
this approach.
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