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Is sos an “optimal algorithm”?

We have alluded several times in this course to the intuition that sum
of squares might be an “optimal algorithm” in some settings, but
why would we think that? and what does this even mean? In this
lecture we explore these questions:

• What does being an “optimal algorithm” mean?

• Why should we expect an optimal algorithm to exist?

• Even if there is some optimal algorithm, why should it be sos?

Optimal algorithms for optimization problems.

Let’s start with the first question. There are several ways to define
optimality, and we will choose one variant for concreteness. In par-
ticular, let us assume that we are dealing with NP maximization
problems. That is, problems of the following type:

• Input: Function f : {0, 1}n → [0, 1] in some explicit form that
allows us to evaluate it.

• Goal: Find x ∈ {0, 1}n that maximizes f (x).

We define opt( f ) = maxx∈{0,1}n f (x).

This is a pretty general formalism. For example, in the Max Cut
problem, the function f is the one that maps a cut (encoded as a
string) to the fraction of edges that it cuts. In the small set expansion
problem, given a graph G = (V, E) we could define f so that f (x) =
0 if x does not encode a sparse set, and otherwise f (x) equals 1−
|E(S, S)|/(d|S|) where S is the set encoded by x.

A computational problem can now be thought of as a set F = ∪nFn

where Fn is some subset of all functions from {0, 1}n to [0, 1], while
a class of problems C is a family of such problems. We will consider
algorithms that take the function f (in some representation) and
output an assignment x ∈ {0, 1}n. We are restricting ourselves to NP
problems, and so assume that the representation of f has poly(n) size
and that one can use it to evaluate f on an input x in poly(n) time.

1. Definition (Optimal algorithm). Let T : N → N and ε > 0. We
say that an algorithm A is (T, ε)-optimal for a problem F if for every
every time T(n) algorithm B

lim
n→∞

[
max
f∈Fn

[opt( f )− A( f )]−max
f∈Fn

[opt( f )− B( f )]
]
≤ ε (1)
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This is a notion of worst case approximate additive optimality.
One can also consider multiplicative approximations, as well as
notions such as average case optimality (where we would replace the
maximum over f ∈ F in Eq. (1) with expectation over a random f ∈
F ∩ [0, 1]{0,1}n

for arbitrarily large n). We can even consider instance
optimality (where we would require the inquality to hold for every f
pointwise) though one then has to be careful to rule out algorithms
B that have the solution to a particular instance “hardwired” inside
them.

Thus, while this is not the be all and end all notion of optimality,
Definition 1 does seem like a reasonable starting point to explore it.
Let’s start by the following observation:

2. Theorem. For every (“nice”, efficiently computable) time complexity
function T : N → N, there exists an algorithm A that runs in time
T(n)poly(n) and is (T, ε) optimal with respect to any NP problem F .

Proof. On input f , the algorithm A will enumerate the first n Turing
machines M1, . . . , Mn and run each one of them for T(n) steps to
obtain x1 = M1( f ), . . . , xn = Mn( f ). It then outputs the xi that
maximizes f (xi). We leave the analysis of this as an exercise.

So, there an optimal algorithm exists but this kind of “diagonaliza-
tion based” algorithm is not very satisfying. So the real question is
whether there is a “simple” or “nice” optimal algorithm, where one
can think of several ways to define what “nice” means:

• We know it when we see it.

• Doesn’t use diagonalization.

• A concrete enough algorithm that we can prove unconditional
lower bounds for it.

• Ties in to other mathematical notions such as convexity etc..

Why should a nice optimal algorithm exist?

Should nice optimal algorithms exist? We don’t really now. But it is
a very important question. At the heart of it is whether we can under-
stand the computational difficulty of problems, in the sense of having
clean criteria (i.e., the performance of a nice optimal algorithm) that
separates the easy problems from the hard ones, and allows us to
make concrete predictions on which problems would be easy or hard.
It can also in principle, reduce the task of designing algorithm, which
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now requires significant creativity and “ad hoc tailoring” to each
problem, into a more systematic enterprise. This is similar to the
way that equation solving in mathematics evolved from a challenge
required the creative genius of people like Leibnitz, Euler, Gauss, etc..
to solve individual equations to a calculation that is now routinely
and automatically done by computer programs.

There are some reasons to be hopeful for such a nice optimal
algorithm, at least in some restricted domains such as combinatorial
optimization:

• The same algorithmic ideas, including notions such as greedy
algorithms, divide and conquer, convex relaxations , keep recurring
in algorithm design. This is particularly true for combinatorial
optimization as opposed to say, algebraic algorithms (e.g., integer
factorization) where ad-hoc tricks using algebraic identities are
more prevalent.

• In practice general purpose software packages for optimization are
widely used for a host of different problems, rather than ad hoc
programs for a particular application.

This seems consistent with the assumption that at least for op-
timization there are a few underlying basic ideas that suffice to
distinguish between those problems that are inherently unsolvable
and those that can be solved efficiently, while clever ad hoc tricks
are useful for either gaining (often very important!) second order
improvements, or facilitating the analysis.

Why sos?

So, one might hope that there is a nice optimal algorithm, and
perhaps even one based on convex optimization, but why sum of
squares? Once again, we don’t really know, and there are certain al-
gorithmic frameworks (such as hyperbolic programming) that could
perhaps offer stronger power. But we can try to get some evidence
for optimality of sos. There are generally two kinds of potential
evidence:

• There are some results proving that sos is optimal algorithm in
terms of worst case approximation ratio. Under the (somewhat con-
troversial) Unique Games Conjecture, Raghavendra [2008] showed
that sos (and in fact a very restricted special case of it) is an op-
timal worst-case approximation algorithm for every constraint
satisfaction problems. Without assuming the UGC, the strongest
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1 Formalizing such results is tricky,
because both linear programming
and semidefinite programming are
P-complete, which means that if we do
not restrict the way that we formalize
a constraint satisfaction problem as
an LP or SDP then we can encode an
arbitrary polynomial-time computation
using it and hence proving optimality
of sos would in particular imply (via
(Grigoriev [2001], Schoenebeck [2008]))
that no polynomial time algorithm can
solve 3SAT and hence that P 6= NP.

result along those lines is of Chan [2016] who showed optimality
of sos for a restricted subset of CSP’s.

• There are results showing that sos captures other convex pro-
gramming techniques. It has been shown that sos is stronger than
certain linear and semidefinite programming hierarchies that
have been considered in the literature such as those of Sherali and
Adams [1990] and Lovász and Schrijver [1991] .

A recent result of Lee et al. [2015] shows that sos is optimal for
CSP’s among all semidefinite programs of comparable size. This give
powerful evidence that if sos is not the strongest convex optimization
based efficient algorithm, one would have to go beyond semidefinite
programming to beat it.1
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