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Finding a sparse vector in a subspace

The sparsest vector problem is the following:

• Input: A subspace V ⊆ Rn of dimension k + 1 (given in the form of
a basis)

• Guarantee: There exists some v0 ∈ V with at most εn nonzero
coordinates.

• Goal: Find some vector v′ ∈ V that is nearly sparse, in the sense
that ‖v′ −Πv′‖ � ‖v′‖ where Πv′ is the projection of v′ to its εn
largest coordinates.

This problem makes sense in both the worst case and average case
settings but our interest in this lecture will be mostly in the lat-
ter, where the subspace V is obtained by taking k random vectors
v1, . . . , vk and letting V = Span{v0, . . . , vk}in The input is an arbitrary
basis for V (or, if you want, k + 1 samples from the basis-independent
standard Gaussian distribution over vectors v ∈ V).

The problem itself is somewhat natural, and can be thought of
as an average-case real (as opposed to finite field) version of the
“shortest codeword” or “lattice shortest vector” problem. This also
turns out to be related (at least in terms of techniques) to problems in
unsupervised learning such as dictionary learning / sparse coding.

There is a related problem, often called “compressed sensing”
or “sparse recovery” in which we are given an affine subspace A of
the form v0 + V, where v0 is again sparse and V is an (essentially)
random linear subspace, and the goal is again to recover v0. Note
that typically this problem is described somewhat differently: we
have an m× n matrix A, often chosen at random, and we get the value
y = Av0. This determines the k = n−m dimensional affine subspace
v0 + ker(A), and we need to recover v0.

One difference between the problems is parameters (we will think
of k� n, while in sparse recovery typically k ∼ n− o(n)), but another
more fundamental difference is that a linear subspace always has
the all-zeroes vector in it, and hence, in contrast to the affine case, v0

is not the sparsest vector in the subspace (only the sparsest nonzero
one).

This complicates matters, as the algorithm of choice for sparse
recovery is L1 minimization: find v ∈ A that minimizes ‖v‖1 =
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1 For p > 0, the p-norm of a vec-
tor v, denoted as ‖v‖p is defined as

(∑i |vi |p)1/p. By taking limits one can
also define ‖v‖∞ = maxi |vi | and
‖v‖0 = |{i | vi 6= 0}|.

∑n
i=1 |vi|. This can be done by solving the linear program:

min
n

∑
i=1

xi

subject to xi ≥ vi

xi ≥ −vi

v ∈ A

(1)

But of course if A were a linear subspace but not affine, then this
would return the all-zero vector. (Though see below on variants that
do make sense for the planted vector problem.)

Formal description of average case problem

We assume that v1, . . . , vk ∈ Rn are chosen randomly as standard
Gaussian vectors (i.e. with i.i.d. entries drawn from N(0, 1)), and v0 is
some arbitrary unit vector with at most εn nonzero coordinates. We
are given an arbitrary basis B for Span{v0, v1, . . . , vk}. The goal is to
recover v0.

For this lecture, this means recovering a unit vector v such that
〈v, v0〉2 ≥ 0.99 (though see Barak et al. [2014] for recovery with arbi-
trary accuracy). For simplicity let’s also assume that v0 is orthogonal
to v1, . . . , vk. (This is not really needed but helps simplify some minor
calculations.)

Ratios of Norms

Rather than trying to directly trying to find a sparse vector, we will
define a smoother proxy for sparsity, that is some polynomial P(·) so
that P(v) is larger for sparse vectors than for small ones. Then we
will look for a vector v in the subspace that maximizes P(v) (subject
to some normalization) and hope that (a) we can efficiently do this
and (b) that the answer is v0. This makes the problem more amenable
for the SOS algorithm and also makes for a more robust notion,
allowing for some noise in v0 (and allows us to not worry so much
about issues of numerical accuracy).

So, we want some function that will favor vectors that are “spikier”
as opposed to “smoother”. We use the observation that taking high
powers amplifies “spikes”. Specifically, we note that if q > p a
sparse/spiky vector v would have a larger ratio of ‖v‖q/‖v‖p than
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2 Some examples include q = ∞ and
p ∈ {1, 2} (exercise), see also Bhaskara
and Vijayaraghavan [2011] .

a dense/smooth one.1 Indeed, compare the all 1’s vector~1 with
the vector 1S for a set S of size εn. ‖~1‖q/‖~1‖p = n1/q−1/p while
‖1S‖q/‖1S‖p = (εn)1/q−1/p which means that if q > p, the latter
ratio is larger than the former by some power of 1/ε. Moreover, an
application of Hölder’s inequality reveals that if v is εn-sparse then
its q vs p norm ratio can only be higher than this:

1. Lemma. If v ∈ Rn has at most εn nonzero coordinates, then

(E iv(i)q)1/q ≥ ε1/q−1/p(E iv(i)p)1/p. (2)

Proof. Let 1|v|>0 be the vector which is 1 if |v(i)| > 0 and 0 otherwise.
Let w ∈ Rn be given by w = 1|v|>0/n1−q/p. Then by Hölder’s
inequality,

(E iv(i)p) = ∑
i

w(i)
v(i)p

nq/p

≤ (∑
i

w(i)1/(1−p/q))1−p/q(∑
i

v(i)q/n)p/q

= ε1−p/q(E iv(i)q)p/q.

(3)

Rearranging gives the result.

How good a proxy for sparsity is this? We know that vectors
which are actually sparse “look sparse” in the ratio-of-norms sense,
but what about the other way around: could the ratio of norms
measure be “fooled” by vectors which are not actually sparse? The
answer is yes. For example, if q = ∞ and p = 1, the vector which
has a 1 in one coordinate and ε in the other coordinates looks like an
ε-sparse (or more accurately ε− 1/n-sparse) vector as far as the ∞
versus 1 norm ratio is concerned, but in the strict `0-sense is actually
maximally non-sparse.

However, as the gap between p and q shrinks, a random subspace
becomes less and less likely to contain these kind of “cheating vec-
tors” that are not sparse but look sparse when comparing `q versus
`p norms. Alternatively phrased, the closer we can take p and q, the
higher dimension random subspace we can tolerate before the sub-
space becomes likely to contain a vector which confuses the `q versus
`p sparsity proxy.

Unfortunately, there are very few values q > p for which we know
how to compute maxv∈V‖v‖q/‖v‖p.2 Demanet and Hand ? and
Spielman, Wang, and Wright ? use the `∞ versus `1 proxy for sparsity
to attack this problem). This can be computed efficiently (see exercise
below) but if k� 1, this will not detect a vector v that is 0.01-sparse.
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3 Hint: First show that for every i,
minimizing ‖v‖1 over v ∈ V where
vi = 1 can be done efficiently via a
linear program.
4 Hint: Use the fact that this is the same
as maximizing over all i 〈ei , Ax〉 where
A is an m× n matrix whose columns are
an orthonormal basis for V.

2. Exercise. Give an efficient algorithm to compute min‖v‖1 over all
v ∈ V with max |vi| ≥ 1.3

3. Exercise. Give an efficient algorithm to compute max‖v‖2=1‖v‖in f ty.4

4. Exercise. Prove that for every subspace V of dimension k, there
exists a vector v ∈ V with maxi vi = 1 and ∑ |vi| ≤

√
k/(10n)

Some works have suggested to use the `2 vs `1 proxy. Which
actually works pretty well in the sense that if V is a random subspace
of dimension at most ηn, then there is no vector v ∈ V whose `2 vs `1

ratio pretends to be a δ-sparse vector where δ is some function of η.

5. Exercise. Prove that for every η < 1 there exists some δ = δ(η)

such that if v1, . . . , vηn are random Standard Gaussian vectors (each
coordinate is distributed according to N(0, 1)) then with probability
at least 0.9 for every x ∈ Rεn with ‖x‖2

2 = 1

εn

∑
i=1
|〈vi, x〉| ≥ δn (4)

6. Exercise. Using the above, show that for every η < 1, there is some
δ = δ(η) such that a random subspace (in our model above) does not
contain a δ-sparse vector.

However, the `2 vs `1 problem has one caveat - we don’t know
how to compute it, even for a random subspace. In fact, this problem
seems quite related to the question of certifying the restricted isometry
property of a matrix— this is the goal of certifying the a random m× n
matrix A (for n > m) satisfies that ‖Ax‖2 ∈ (C, 1/C)‖x‖2 for every
sparse vector x. In particular this would be false if there was a sparse
vector in the Kernel of A, which is a subspace of Rn of dimension
m− n. Known methods to certify this property require that the sparse
vector x has at most

√
m nonzero coordinates. See also this blog post

of Tao and Koiran and Zouzias [2014] .

The 2 to 4 norm problem

In the following, we will use `4 versus `2 as our proxy for sparsity.
It might seem like a strange choice since a priori it appears to yield
the “worst of both worlds”. On one hand, though it is better than
the `∞ vs `1 proxy, the `4/`2 ratio is a worse proxy than the `2 vs
`1 ratio, and to detect 1/100-sparse vectors we will need to require
the dimension k of the subspace to be at most ε

√
n for some ε > 0

(which is much better than k = O(1) needed in the `∞/`1 case but

http://terrytao.wordpress.com/2007/07/02/open-question-deterministic-uup-matrices/
http://terrytao.wordpress.com/2007/07/02/open-question-deterministic-uup-matrices/


Proof, beliefs, and algorithms through the lens of sum-of-squares 5

k = Ω(n) achieved in the `2/`1 case). On the other hand, we don’t
know how to compute this ratio either. In fact, Barak et al. [2012]
showed (via connections with the quantum separability problem) that
computing this ratio cannot be done in nO(log n) time unless SAT has
a subexponential time algorithm, and that even achieving weaker
approximations would break the Small-Set Expansion (and hence
probably also the Unique Games) conjecture. Nevertheless, we will
show that we can in fact compute this ratio in the random case, using
the degree 4 SOS system.

7. Exercise. Show that the 2 to 4 ratio cannot detect 1/100-sparse
vectors if the subspace has dimension much larger than

√
n. That is,

prove that if V ⊆ Rn has dimension k >
√

n then there is a vector
v ∈ V such that E v4

i ≥
k2

10n
(
E v2

i
)2.

Sparsest vector via sos

Maximizing the 2 to 4 norm over a subspace V ⊆ Rm of dimen-
sion n can be phrased as the polynomial optimization problem
max‖x‖2=1‖Bx‖4

4 where B is the m× n generating matrix for the sub-
space V (i.e. Im(B) = V and ‖Bx‖2 = ‖x‖2 for all x). We run the
degree 4 sos algorithm to obtain a pseudo-distribution µ over the
sphere. The rounding algorithm will simply be to use the quadratic
sampling lemma to sample a random w from a Gaussian distribu-
tion whose second moments match those of µ. Thus, analyzing this
algorithm boils down to proving the following:

8. Theorem (Sparse vector recovery). If the subspace V =

Span{v1, . . . , vk} is chosen at random and v0 is a unit vector orthogonal
to v1, . . . , vk and has at most 0.00001k2 nonzero coordinates, then for
every distribution µ over unit vectors in V where Ẽµ(w)‖w‖

4
4 = ‖v0‖4

4

Ẽµ‖Pw‖2
2 ≤ 0.01 where P is the projector to Span{v1, . . . , vk}.

This result means that if w ∈ V is a vector such that both ‖w‖2 and
‖Pw‖2

2 are close to their expectations (which are 1 and at most 0.01
respectively) then, writing w = 〈w, v0〉v0 + w′ where w′ is in the span
of {v1, . . . , vk}, we see that ‖w′‖2 ≤ 0.01 and hence 〈w, v0〉2 ≥ 0.99.
Somewhat cumbersome but not too hard calculations spelled out
below will show that we can get sufficiently close concentration
(essentially since we can repeat the process and output the sparsest
vector w we can find).

The algorithm described above only looks at the first two moments
of the pseudo distribution. So, why did we need it to be a degree 4
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(as opposed to degree 2) pseudo distribution? This is only for the
proof, though note that the `4/`2 SOS program doesn’t even make for
degree < 4 pseudo-distributions.

Proof of Theorem 8

The SoS algorithm gives us a pseudodistribution that “pretends”
to be supported on unit vectors v ∈ Span{v0, . . . , vk} such that
‖v‖4

4 = C4/n. We first prove the main lemma for actual distributions
and then demonstrate an instance of “Marley’s Hypothesis”: if you
proved it for real distributions and didn’t use anything too fancy,
then every little thing gonna be all right (when you try to prove it for
pseudodistributions).

The main result we will take at the moment as a given is the
following:

9. Lemma (Random subspaces don’t contain 2 to 4-sparse vectors).
If k�

√
n, with high probability

‖Pv‖4
4 ≤ 10‖Pv‖4

2/n (5)

for every v.

We will show that Lemma 9 implies our Main Lemma for actual
distributions. Namely, we show the following:

10. Lemma (2 to 4 sparsity implies correlation). If P satisfies Eq. (5)
then for every unit vector w ∈ V with ‖w‖4 ≥ ‖v0‖4/100 = C/100n1/4,
the square correlation of w with v0 satisfies 〈w, v0〉2 ≥ 1−O(1/C).

Proof. Let w ∈ V be a unit vector. We can write w = αv0 + Pw. Hence,
using the triangle inequality for the `4-norm,

‖w‖4 ≤ α‖v0‖4 + ‖Pw‖4 (6)

which can be rearranged to

α ≥ 1− ‖Pw‖4
‖v0‖4

(7)

But since ‖v0‖4 = C/n1/4, and Lemma [lem:random:actual] ‖Pw‖4 ≤
2/n1/4, the RHS is at least 1− 2/C.

Lemma 10 concludes the proof of the main lemma in the actual
distribution case since ‖w‖2

2 = 〈w, v0〉2 + ‖Pw‖2
2.
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Pseudo-distribution version and proofs

We now state the pseudo-distribution versions of our lemmas and
prove them:

11. Lemma (Random subspaces don’t pseudo contain 2 to 4 sparse
vectors). With high probability

‖Pv‖4
4 � 10‖Pv‖4

2/n (8)

where we now think of ‖Pv‖4
4 and ‖Pv‖4

2 as polynomials in indeterminates
v and with coefficients determined by P, and � denotes that the polynomial
10‖Pv‖4

2 − ‖Pv‖4
4 is a sum of squares.

12. Lemma (Pseudo-sparsity implies correlation). If P satisfies Eq. (8)
then for every degree 4 pseudo-distribution over the unit sphere satisfying
‖x‖4

4 = ‖v0‖4
4 = C4/n it holds that Ẽ 〈x, v0〉2 ≥ 1−O(1/C).

Now we test “Marley’s Hypothesis” by lifting the proof of
Lemma 10 to the pseudo-distribution case and proving Lemma 12.
We need to be able to mimic all the steps we used when everything
is wrapped in pseudoexpectations. The main interesting step in
the proof of Lemma 10 was our use of the triangle inequality that
‖x + y‖4 ≤ ‖x‖4 + ‖y‖4.

13. Lemma (Triangle Inequality for Pseudodistributions). Let µ be a
degree-4 pseudodistribution over R2n. Then

Ẽ
µ(x,y)

‖x + y‖4
4

1/4
≤ Ẽ ‖x‖4

4
1/4

+ Ẽ ‖y‖4
4

1/4
. (9)

14. Exercise. Prove Lemma 13

We note that the following easier bound would be fine for us:

15. Exercise. If a pseudo-distribution µ over (x, y) ∈ R2n satisfies
Ẽ‖x‖4

4 ≥ Ẽ‖y‖4
4 then

Ẽ ‖x + y‖4
4 ≤ Ẽ ‖x‖4

4 + 15
(

Ẽ ‖x‖4
4

1/4
)3/4 (

Ẽ ‖y‖4
4

)1/4
. (10)

Proof of Lemma 12 from Lemma 11: The proof is almost identical
to the proof of Lemma [lem:cor:actual]. Let P satisfy

‖Px‖4
4 �

10‖Px‖4
2

n
(11)

where we interpret both sides as polynomials in x. Let {x} be a
degree-4 pseudodistribution satisfying {‖x‖2

2 = 1, ‖x‖4
4 = ‖v0‖4

4 =
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C4/n}. Using the pseudodistribution triangle inequality,

Ẽ ‖x‖4
4

1/4
≤ Ẽ ‖〈x, v0〉v0‖4

4
1/4

+ Ẽ ‖Px‖4
4 =

C
n1/4 Ẽ 〈x, v0〉4

1/4
+ Ẽ ‖Px‖4

4
1/4

.

(12)

Rearranging and using our assumptions on {x} ,

Ẽ 〈x, v0〉4
1/4
≥ n1/4

C
(Ẽ ‖x‖4

4
1/4
− Ẽ ‖Px‖4

4
1/4

) = 1− n1/4

C
Ẽ ‖Px‖4

4
1/4

.
(13)

Now we use our assumption on P to get

Ẽ ‖Px‖4
4

1/4
≤ 2

Ẽ ‖Px‖4
2

1/4

n1/4 . (14)

Moreover, note that ‖Px‖4
2 � ‖x‖

4
2, since both are homogeneous

degree-4 polynomials all of whose monomials are squares and the
coefficient of every monomial on the left-hand side is smaller than
the corresponding coefficient on the right. This gives

Ẽ ‖Px‖4
2 ≤ Ẽ ‖x‖4

2. (15)

Putting it together, we get

Ẽ 〈x, v0〉4
1/4
≥ 1− 2

C
Ẽ ‖x‖4

2
1/4

. (16)

Since {x} satisfies Ẽ ‖x‖2
2 = 1, we have

Ẽ ‖x‖2
2

(
‖x‖2

2 − 1
)
= 0 (17)

and therefore Ẽ ‖x‖4
2 = 1. Plugging this in to the above,

Ẽ 〈x, v0〉4
1/4
≥ 1− 2

C
. (18)

The last step is to relate Ẽ 〈x, v0〉4 and Ẽ 〈x, v0〉2. Again using that
{x} satisfies Ẽ ‖x‖2

2 = 1, we have

Ẽ 〈x, v0〉2‖x‖2
2 = Ẽ 〈x, v0〉2. (19)

Moreover, since 〈x, v0〉2 � ‖x‖2
2 we must have 〈x, v0〉4 � 〈x, v0〉2‖x‖2

2
(the difference of the two sides in the former is a sum of squares;
multiplying that SoS polynomial by the square polynomial ‖x, v0‖2

yields another SoS polynomial which is the difference between the
two sides in the latter case).

All together, we get

Ẽ 〈x, v0〉2 ≥ Ẽ 〈x, v0〉4 ≥
(

1− 2
C

Ẽ ‖x‖4
2

1/4
)4
≥ 1− 8

C
(20)

and we are done.
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Proof of Lemma 11

True to form, we would like to start by proving Lemma 9 and then
lift the proof to the SoS setting. Lets start with a heuristic argument
on why would Lemma 9 be true. Think of the case that we fix a unit
vector x ∈ Rk and pick v1, . . . , vk as random Gaussian vectors of
unit norm in Rn, i.e., each entry is distributed as N(0, 1/

√
n). Then,

the vector w = ∑ xivi would have each coordinate be a Gaussian
random variable distributed as N(0, 1/

√
n) (since ∑ x2

i = 1). Now the
probability ‖w‖4

4 ≥ C4/n is the probability that ∑n
i=1 g4

i ≥ nC4 where
the gi’s are independent standard Gaussians.

Typically a sum of independent random variables can be large for
two different reasons. Either every one of those random variables
is moderately large, or one of them is very large. In this case, the
probability that every one of the gi’s would be of magnitude at least
C is exp(−C2) and so the probability that all of them satisfy this
would be exp(−Ω(n)). This is much smaller than the probability
that a single one of the gi’s has magnitude at least Cn1/4 which is
exp(−O(

√
n)) and indeed one can show that the latter event is the

one dominating this probability. Thus, if C2√n � k, we can do a
union bound over a sufficiently fine net of Rk and rule this out.

This argument can be turned into a proof, but note that we have
used a concentration and union bound type of argument, i.e. the
dreaded probabilistic method, and hence cannot appeal to Marley’s
Corollary for help. So, we will want to try to present a different
argument, that still uses concentration but somehow will work out
fine.

Intuition and Heuristic Argument

A formulation that will work just as well for the proof of the main
theorem is: given an orthonormal basis matrix B for Span{v1, . . . , vk},

‖Bv‖4
4 ≤ 10‖v‖4

2/n (21)

Now, the matrix B whose columns are v1/
√

n, . . . , vk/
√

n is almost
such a matrix (since these vectors are random, they are nearly orthog-
onal), and so let’s just assume it is the basis matrix. So, we need to
show that if B has i.i.d. N(0, 1/

√
n) coordinates and n � k2 then

with high probability Eq. (21) is satisfied.
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5 Hint: One matrix that represents the
polynomiaL Q(v) = ‖v‖4

2 is the n2 × n2

identity matrix.

Let w1, . . . , wn be the rows of B. Then,

n‖Bv‖4
4 =

n

∑
i=1
〈wi, v〉4 = 1

n

n

∑
i=1

n2〈wi, v〉4 (22)

That means that we can think of the polynomial Q(v) = ‖Bv‖4
4n as

the average of n random polynomials each chosen as 〈g, v〉4, where
g =
√

nw has i.i.d N(0, 1) entries. Since in expectation 〈g, v〉4 ≤ 5‖v‖4
2

(exercise), we can see that if n is sufficiently large then Q(v) will
with high probability be very close to its expectation and so have
Q(v) ≤ 10‖v‖4

2. It turns out that “sufficiently large” in this case
means as long as n � k2. Moreover, we will be able to show that in
this case, Q(v) = 10‖v‖4

2 − s(v) where s is a sum of squares polynomial
of degree four.

We now give some high level arguments on how to make this into
a proper proof. We first recall the following exercise:

16. Exercise. Let P, Q be two homogenous n-variate degree 4 polyno-
mials, and write P � Q if Q− P is a sum of squares. Prove that P � Q
if and only if there exist matrices MP, MQ such that for every x ∈ Rn,
P(x) = 〈MP, x⊗4〉 and Q(x=〈MQ, x⊗4〉 such that MP � MQ in the
spectral sense. (i.e., where we say that a matrix A satisfies A � B if
w>Aw ≤ w>Bw for all w.)

17. Exercise. Prove that a degree four polynomial P satisfies P �
λ‖x‖4

2 if and only if there exists such a matrix MP with ‖MP‖ ≤ λ

where ‖MP‖ denotes the spectral norm.5

This connection suggests using the Matrix Chernoff Bound
(Ahlswede and Winter [2002]) which can be stated as follows: and

18. Theorem (Matrix Chernoff Bound). Let X1, . . . , Xn be i.i.d. m×m
matrix valued random variables with expectation M and with M − cI �
Xi � M + cI, then

P[ 1
n ∑ Xi 6∈ M± εI] ≤ m exp(−ε2n/c2) (23)

(One intuition for this bound is that it turns out that diagonal
matrices are the hardest ones, and if the distribution was on diagonal
matrices, then we need to use the usual Chernoff bound m times and
so lose a factor of m in the probability bound.)

In our case, the distribution of Xi’s is the distribution of the matrix
corresponding to the polynomial 〈g, x〉4 whose largest eigenvalue
is ‖g‖4 = k2, and so the RHS becomes k2 exp(−ε2n/k4) and so if
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n � k4 log k this will suffice. It turns out that (at considerable pain)
one can avoid the log k factor and get the condition n � k2. This
completes the proof of Lemma 11.

Analyzing success probability

We can now complete the proof of Theorem 8. Let µ be the degree 4

pseudo-distribution satisfying the conditions of the theorem and let
{u} be the Gaussian distribution that matches its first two moments.
By Lemma 11, Ẽµ ‖Px‖2

2 ≤ 0.001 with high probability, and since
‖Px‖2

2 is a degree-2 polynomial, the Quadratic Sampling Lemma
implies that E u‖Pu‖2

2 ≤ 0.001. By the same argument, E u‖u‖2
2 = 1.

We can now use standard results on the Gaussian distribution to
transfer the expectation statements to probability bounds

1. Pu ‖u‖2
2 ≤ 1

2 ≤
5
6

2. Pu ‖Pu‖2
2 ≥ 0.01 ≤ 1/10.

We defer the proofs of 1. and 2. to later, and first argue why they
complete the proof of Theorem 8. By combining 1. and 2., with
probability at least 1/15 the algorithm samples u with ‖u‖2

2 ≥ 1/2
and ‖Pu‖2

2 ≤ 0.01. In this case, ‖Pu‖2
2 ≤ 0.02‖u‖2

2. We assumed
v0 ⊥ v1, . . . vk, which means we can write

‖u‖2
2 = 〈u, v0〉2‖v0‖2

2 + ‖Pu‖2
2 = 〈u, v0〉2 + ‖Pu‖2

2. (24)

Since ‖Pu‖2
2 makes up only a 0.02 fraction of this mass, 〈u, v0〉 must

make up the rest, and we get 〈u, v0〉 ≥ 0.98‖u‖2
2. Scaling u to be unit,

we recover a unit vector u/‖u‖ with very high correlation with v0.

The success probability can be amplified since by repeatedly
sampling a vector u and testing the ratio of ‖u‖4 to ‖u‖2. So, all that
is left to complete the proof of Theorem 8 is to show the proofs of the
statements 1. and 2. above.

Proof of 1.: We start with a standard second-moment concentration
inequality, which we prove here for completeness. Let X be a nonnega-
tive random variable and let θ > 0. Then

E X ≤ θ + P X ≥ θ E[X|X ≥ θ]

E X2 ≥ P X ≥ θ E[X2|X ≥ θ]
Jensen
≥ P X ≥ θ E[X2|X ≥ θ]2.

(25)

Combining the equations by eliminating E[X|X ≥ 0] and rearranging
gives

P X ≥ θ ≥ E X− θ2

E X2 . (26)
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We apply this to the random variable ‖u‖2
2 for some θ to be chosen

later to get

P ‖u‖2
2 ≥ θ ≥ E ‖u‖2

2 − θ
2

E ‖u‖4
2

. =
(1− θ)

E ‖u‖4
2

. (27)

We need to upper-bound E ‖u‖4
2. We expand

E ‖u‖4
2 = ∑

i,j
E u(i)2u(j)2

Cauchy-Schwarz
≤ ∑

i,j

√
E u(i)4

√
E u(j)4 =

(
∑

i

√
E u(i)4

)2

.

(28)

For fixed i, let µi, σi be such that u(i) ∼ N(µi, σi). It is a Wikipedia-able
fact that

E u(i)2 = µ2
i + σ2

i

E u(i)4 = µ4
i + 6µ2

i σ2
i + 3σ4

i .
(29)

Hence,
E u(i)4 = E u(i)22

+ 4µ2
i σ2

i + 2σ4 ≤ 3 E u(i)22
(30)

which yields (
∑

i

√
E u(i)4

)2

≤ 3

(
∑

i
E u(i)2

)2

= 3. (31)

So if we pick θ = 1
2 we get P ‖u‖2

2 ≥ 1
2 ≥

1
6 .

Proof of 2: This is straight Markov’s inequality.
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