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1 This problem also shows that small
syntactic changes in the problem
definition can make a big difference
for its computational complexity. The
problem of finding the minimum cut
in a graph has a polynomial-time
algorithm, whereas a polynomial-time
algorithm for finding a maximum cut is
unlikely because it would imply P=NP.
2 In the literature, several different
terms, e.g., expansion, conductance, and
sparsest-cut value, are used to describe
closely related parameter of graphs.
In these notes, we will not distinguish
between these parameters and stick to
the term expansion.
3 for a suitable notion of “best”
4 One interesting feature of these
algorithms also is that we don’t know
how to achieve the same approximation
guarantees with different algorithmic
techniques. In this sense, sum-of-
squares brings something unique to the
table for these problems.

Maximum cut and related problems

Figure 1: The graph of Renato Paes
Leme’s friends on the social network
Orkut, the partition to top and bottom
parts is an approximation of the
maximum cut while the partition to left
and right sides is an approximation of
the sparsest cut

In this lecture, we will discuss three fundamental NP-hard opti-
mization problems that turn out to be intimately related to each other.
The first is the problem of finding a maximum cut in a graph. This
problem is among the most basic NP-hard problems. It was among
the first problems shown to be NP-hard (Karp [1972]).1 The second
problem is estimating the expansion2 of a graph. This problem is re-
lated to isoperimetric questions in geometry, the study of manifolds,
and a famous inequality by Cheeger [1970]. The third problem is
estimating mixed norms of linear operators. This problem is more
abstract than the previous ones but also more versatile. It is closely
related to a famous inequality by Grothendieck [1953].

How are these seemingly different problems related? First, it
turns out that all three of them can be phrased in terms of optimiz-
ing a quadratic polynomial over the hypercube. Second, all three
have beautiful approximation algorithms based on degree-2 sum-of-
squares which give the best3 known guarantees for the respective
problem.4 Third, any improvement in the approximation guaran-
tee of these algorithms would refute the Unique Games Conjecture
(Khot [2002]) or the closely related Small-Set Expansion Hypothesis
(Raghavendra and Steurer [2010]).

Approximating the maximum cut

We now define the Max Cut problem:

1. Problem (Max Cut). Given a graph, find a bipartition of the vertex
set that cuts as many edges as possible.
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Figure 2: The “Max Cat” problem.
Illustration by Alma Barak

5 For more applications, see also the
survey (Deza and Laurent [1994]).

6 If you haven’t encountered random-
ized algorithms before, it’s a useful
exercise to convince yourself that this
algorithm can be derandomized: Show
that there exists an efficient determinis-
tic algorithm that given an undirected
graph outputs a bipartition that cuts at
least half of the edges.

For every graph G, we let maxcut(G) denote the fraction of edge
cut by an optimal Max Cut solution for G. Max cut is a natural
graph problem, motivated by applications such as efficient design
of electric circuits or communication networks, but has also found
uses to questions in statistical physics such as finding an energy
minimizing configuration in the ising model.5 But more than this, the
Max Cut problem has served as a prototypical testbed for algorithmic
techniques that have found extensive and sometimes surprising
applications. For example, a variant of the algorithm for Max Cut
that we present in this lecture has been used for the Phase Retrieval
problem that appears in X-ray crystallography, diffraction imaging,
astronomical imaging and other applications (see (Candès et al.
[2013]; Waldspurger et al. [2015])).

Since a random bipartition cuts half the edges in expectation, there
is an efficient randomized6 algorithm to find a bipartition that cuts at
least 1

2 ·maxcut(G) of the edges. We say that this algorithm achieves
an approximation factor of 1

2 . In fact, this algorithm for Max Cut was
suggested by Erdős in 1967, and is one of the first analyses of any
approximation algorithm.

A priori, it is not clear how to beat this approximation ratio or if
that is possible at all. In a random d-regular graph (which is an excel-
lent expander), one cannot cut more than a 1

2 + ε fraction of the edges
(where ε goes to zero as d goes to infinity). But locally, it is hard to
distinguish a random d-regular graph from a random d-regular “al-
most bipartite” graph, where we split the vertex sets into two parts
of equal size and each edge is with probability ε inside one of those
parts and with probability 1− ε between them. Such a graph G obvi-
ously has maxcut(G) ≥ 1− ε but every neighborhood of it looks like
a d-regular tree, just as in the case of a random d-regular graph. For
this reason, “combinatorial” (or even linear programming) algorithms
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7 In the previous lecture our focus
was on minimizing a function over the
cube. However note that maximizing a
function f is equivalent to minimizing
− f , and hence we will freely use
whichever formulation is more natural
for a given problem.

have a hard time getting an approximation factor better than 1
2 for

Max Cut. Indeed, Chan et al. [2013] show that no linear program-
ming relaxation of polynomial-size can have an approximation factor
smaller than 1

2 factor for Max Cut.

As alluded to before, sum-of-squares techniques allow us to go be-
yond approximation factor 1

2 for Max Cut (Goemans and Williamson
[1994]).

2. Theorem (Max Cut approximation). There exists a polynomial time
algorithm that given a graph, outputs a bipartition such that the number of
cut edges is at least 0.878 times the maximum number possible.

Max cut as a quadratic optimization problem over the hyper-
cube

In order to apply the sum-of-squares framework we formulate Max
Cut as a polynomial optimization problem. Let G be a graph of n
vertices. Identify the vertex set of G with [n]. We let a vector x ∈
{0, 1}n represent the bipartition of [n] such that one side consists of
every vertex i with xi = 1. Let fG be the function that assigns to every
x ∈ {0, 1}n the number fG(x) of edges cut by the bipartition that x
represents. Then, fG agrees with the following quadratic polynomial
for every x ∈ {0, 1}n,

fG(x) = ∑
(i,j)∈E(G)

(xi − xj)
2 . (1)

Thus the task of computing maxcut(G) is identical to the task of
computing maxx∈{0,1}n fG(x).7

Sum-of-squares certificates for Max Cut

A simple way to describe the power of sum-of-squares for Max Cut
is in terms of certificates. In order to certify that some graph G and
some value c satisfy max fG ≥ c it is enough to exhibit a single
bipartition x ∈ {0, 1}n of G such that fG(x) ≥ c. In contrast, it
is unclear how to efficiently certify statements of the max fG ≤ c
because any certificate has to rule out an exponential number of
possible bipartitions x. The following theorem shows that sum-of-
squares provides efficient certificates for the inequality fG ≤ c as long
as c ≥ max fG/0.878.
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8 The edges inside S and V \ S get
counted with a positive sign and the
ones between S and its complement get
counted with a negative sign. The factor
of two is because every edge is counted
twice.

9 This certificate shows that
maxcut(G) ≤ c

3. Theorem (degree-2 sos certificates for Max Cut). For every graph G
with n vertices, there exist linear functions g1, . . . , gn : {0, 1}n → R such
that for every x ∈ {0, 1}n,

max( fG)− 0.878 · fG(x) = g1(x)2 + · · ·+ gn(x)2 . (2)

The rest of this section is devoted to proving Theorem 2 and
Theorem 3.

Aside: sum-of-squares certificates and eigenvalues

There is a fairly straightforward way to certify some non-trivial bound
on the maximum cut. For a graph d-regular G with vertex set [n]
and edge set E, let A = A(G) be its adjacency matrix of G, i.e.,s the
n-by-n matrix

Ai,j =

1 if {i, j} ∈ E,

0 otherwise.
(3)

Let λ be the smallest eigenvalue (i.e., most negative) of A. Note
that λ is in [−d, 0) (can you see why?) and, as you will show in the
exercise below, λ = −d if and only if G contains a bipartite connected
component. Now, for every bipartition x ∈ {0, 1}n corresponding to
some set S ⊆ [n], if y ∈ {±1}n is the vector y = 1− 2x then yt Ay =

2(|E(S, S)| + |E(V \ S)|) − 2|E(S, V \ S)| = 2|E| − 4|E(S, V \ S)|.8
Hence, since y>Ay ≥ λ‖y‖2 = λn, we get that |E(S, V \ S)| ≤
|E|/2− nλ/4. In particular, since |E| = nd/2, if λ ≥ −(1− ε)d we get
that |E(S, V \ S)| ≤ (1− ε/2)|E|.

The exercises below ask you to show that this bound can in fact be
proven via a sum-of-squares proof and moreover that this bound is
non-trivial (i.e., smaller than |E|) for every non-bipratite graph. (The
first exercise is closely related to this exercise in the notes for lecture
1).

4. Exercise (Smallest eigenvalue bound for max cut). Let G be a d-
regular graph with n vertices. Suppose the adjacency matrix of G has
smallest eigenvalue λ. Show that for c = 1

2 · (1− λ/d) the function
c · |E| − fG has a degree-2 sos certificate.9

5. Exercise (non triviality of eigenvalue bound). Prove that for every
d-regular connected non-bipartite graph G, the minimum eigenvalue
of A(G) is larger than −d.

6. Exercise (Limits of eigenvalue based approximation). Show that
for every ε > 0 there exists some d and a d regular connected graph

lec01-2_definitions.html#spectral-bound-for-max-cut
lec01-2_definitions.html#spectral-bound-for-max-cut
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G such that maxcut(G) ≤ 1/2 + ε but the minimum eigenvalue of G is
at most −(1− ε)d.

7. Exercise (Eigenvalue bound for random graphs). Show that
for a random d-regular graph the eigenvalue bound certifies that
maxcut(G) ≤ 1/2 + o(1), where o(1) goes to 0 as d goes to infinity.

For more about the relationship between the minimum eigenvalue
and the max cut value, see Trevisan [2009].

Pseudo-distributions for Max Cut

Recall the definition of pseudo-distribution over the hypercube. For
functions µ, f : {0, 1}n → R, we denote the pseudo-expectation of f
under µ as

Ẽ
µ

f = ∑
x∈{0,1}n

µ(x) · f (x) . (4)

(We extend the above definition also to vector-valued functions f .)
We say that µ is a degree-2k pseudo-distribution if Eµ 1 = 1 and
Eµ g2 ≥ 0 for all g : {0, 1}n → R with deg g ≤ k.

By the duality between sos certificates and pseudo-distribution,
the theorem below implies Theorem 3. Furthermore, since we can
optimize over low-degree moments of pseudo-distributions over the
hypercube up to arbitrary accuracy, the theorem below also implies
Theorem 2.

8. Theorem (Rounding pseudo-distributions for Max Cut). For every
graph G and degree-2 pseudo-distribution µ over the hypercube, there exists
a probability distribution µ′ over the hypercube such that

E
µ′

fG ≥ 0.878 · Ẽ
µ

fG . (5)

Furthermore, there exists a randomized polynomial-time algorithm that
given the pseudo-distribution µ (say represented by its degree-2 moments
Eµ(x) xxᵀ) outputs a sample from µ′.

Proof. Let 1 denote the all-ones vector in {0, 1}n. For simplicity,
assume Ẽµ(x) x = 1

2 · 1. (Otherwise, consider the pseudo-distribution
1
2 (µ(x) + µ(1− x)), which satisfies this property and has the same
pseudo-expectation for fG.) We define the probability distribution
µ′(x′) in terms of the following sampling algorithm:

• Choose ξ as a Gaussian vector with covariance Ẽµ(x) xxᵀ and mean
Ẽµ(x) x (see quadratic sampling lemma from lecture 1).
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10 This step is the only one that uses
the fact that we are interested in
the maximum value of fG over the
hypercube as opposed to the sphere.

• Output x′ ∈ {0, 1}n with x′i = 0 if ξi <
1
2 and x′i = 1 otherwise.

By the form of fG, it is enough to show the following inequality
for all i, j ∈ [n].

E
µ′(x′)

(x′i − x′j)
2 ≥ 0.878 · Ẽ

µ(x)
(xi − xj)

2 . (6)

Fix the indices i and j in [n]. Since µ is a pseudo-distribution over the
hypercube, xi and xj have variance Ẽµ(x) x2

i −
1
4 = Ẽµ(x) x2

j −
1
4 = 1

4 .10

Let ρ = 4 Ẽµ(x) xixj − 1 be the covariance of xi and xj under µ (after
rescaling them to have variance 1). Since ξ is Gaussian with the same
first two moments as x,

(ξi, ξ j) ∼ N
(

1
2 ·
(

1
1

)
, 1

4 ·
(

1 ρ
ρ 1

))
. (7)

Therefore, 2ξ j − 1 = ρ · (2ξi − 1) +
√

1− ρ2 · ξ⊥i , where ξ⊥i ∼ N (0, 1)
is a standard Gaussian independent of ξi. It follows that

E
D′(x′)

(x′i − x′j)
2 = P

ξi ,ξ j

{
sign(2ξi − 1) 6= sign(2ξ j − 1)

}
= P

s,t∼N (0,1)

{
sign s 6= sign

(
ρ · s +

√
1− ρ2 · t

)}
.

(8)

The event on the right-hand side consists of the set of all pairs (s, t)
in two conic regions symmetric around the origin that each form an
angle of arccos ρ. By rotational symmetry of the Gaussian distribu-
tion, it follows that the event has probability arccos ρ

π .

At the same time,

E
µ(x)

(xi − xj)
2 = 1

2 · (1− ρ) . (9)

Therefore, it remains to verify that

2 arccos ρ

(1− ρ)π
≥ 0.878 , (10)

which we can do by single-variable calculus.

In the proof of Theorem 8 it may seem almost “accidental” that
the final constant ends up being bigger than 1/2. However, if we just
wanted to see that the approximation ratio is bigger than 1/2 a more
direct calculation suffices. Note that if the optimal value maxcut(G)

is smaller than say 0.99 then already the naive randomized algo-
rithm achieves an approximation ratio of 0.99/0.5, which is bigger
than 1/2. Therefore, the challenge is to find bipartitions for graphs
with maxcut(G) ≥ 0.99 that cut significantly more than half of the
edges. The following exercise gives a “calculus free” analysis of an
algorithm with this property.
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Figure 3: To generate two ρ-correlated
Gaussian random variables we choose
a standard two-dimensional Gaussian
vector (s, t) (the red point) and project
it onto the normals of two lines at an
angle of arccos ρ. The signs differ if and
only if the two dimensional Gaussian
falls between these two lines, which
happens with probability arccos ρ

π .
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Figure 4: The approximation ratio of
the Goemans-Williamson algorithm is
the minimum of arccos(1− 2x)/(πx)
over all x ∈ [0, 1]. This minimum value
is roughly 0.878 and is achieved at cut
value x ≈ 0.845. (Here, we made the
substitution x = (1− ρ)/2. The critical
point for ρ is ρGW ≈ −0.69.)

11 Hint: You can use the same construc-
tion for µ′ as in the proof of Theorem 8.

9. Exercise (rounding for near-bipartite graphs). Show every degree-2
pseudo-distribution µ over the hypercube, there exists an efficiently
sampleable probability distribution µ′ over the hypercube such that
for every ε > 0 and every graph G,

Ẽ
µ

fG ≥ (1− ε) · |E(G)| =⇒ E
µ′

fG ≥ (1− 2
√

ε) · |E(Gs)| . (11)

(In particular, when maxcut(G) ≥ 0.99, we can take ε = 0.01 and get
bipartitions with expected value at least 1− 2 · 0.1 = 0.8 > 0.5 under
µ′.) 11

In general, we can ask about the curve between the value of the
pseudo-distribution and the value achieved by a rounding algorithm.
Concretely, for every value of c, what is the largest value of s such
that a degree-2 pseudo-distribution with Ẽµ fG ≥ c · |E(G)| for a
graph G always allows us to efficiently find a bipartition x with value
fG(x) ≥ s · |E(G)|. It turns out that the above algorithm does not
achieve the best possible “approximation curve” but similar ideas
work, see (O’Donnell and Wu [2008]).

The following exercise asks you to analyze the approximation
curve of the Goemans–Williamson algorithm for a particular range of
c.
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12 Hint: Prove first that the following
function g : [0, 1] → R is convex:
g(c) = αGWc for c < cGW and g(c) =
arccos(1 − 2c)/π for c ≥ cGW. s
Then prove that for every edge i, j, the
probability that µ′ will cut the edge is at
least g

(
Ẽµ(xi − xj)

2).

10. Exercise (rounded value vs. pseudo-distribution curve). Let
cGW ≈ 0.845 be the minimizer of c 7→ arccos(1− 2c)/(πc) and let
αGW ≈ 0.878 be the minimum value of this function. Show that for
every c ≥ cGW, every graph G, and every degree-2 distribution µ over
the hypercube such that Ẽµ fG = c · |E|, there is an actual distribution
µ′ such that Ẽµ′ fG ≥ arccos(1− 2c)/π. 12
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