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1 The name “integrality gap”, as well
as the related notion of a “rounding
algorithm” arise from the setting of
using a linear program as a relaxation
of an integer linear program, where
the optimal value of the linear pro-
gramming relaxation is known as the
fractional value, and the opitmal value of
the integer linear program is known as
the integral value.

Limitations of the sum of squares algorithm

In the last lecture we have seen how the sum of squares algorithm
can achieve non-trivial performance guarantees for several interesting
problems. But it is not all powerful. In this lecture we will see some
negative results for the sum of squares algorithm, showing lower
bounds on the degree needed to certify certain problems. In many
cases, we do not know of any algorithms that do better, but in some
cases we do, and we will see examples of both types. In the standard
parlance, these negative results are known as integrality gaps, since
these are instances in which there is a gap between the value that the
pseudo-distribution “pretends” and the true objective value.1

The cycle as an integrality gap for Cheeger’s Inequality and
Max-Cut

Recall that the discrete Cheeger’s inequality states that every d-
regular graph G with adjacency matrix A satisfies λ ≥ Ω(ϕ(G)2),
where λ is the second smallest eigenvalue of the normalized Lapla-
cian LG = I − 1

d A. It turns out the humble cycle shows that this bound
is tight.

1. Lemma (Second eigenvalue of the cycle). Let Cn be the cycle on n
vertices and let LCn be its normalized Laplacian. Then the second smallest
eigenvalue of LCn is at most O(1/n2).

The lemma shows that Cheeger’s inequality is tight for the Cn

because every subset S ⊆ V(Cn) with 1 ≤ |S| ≤ n− 1 has at least
one neighbor outside of S. Therefore, the expansion of Cn is at least
ϕ(Cn) ≥ Ω(1/n).

Proof. Let ω = e2πi/n ∈ C be the n-th root of unity. The vector
v = (ω0, ω1, . . . , ωn−1) is orthogonal to the all-ones vector 1,

〈v, 1〉 =
n−1

∑
`=0

ω` =
ω0 −ωn

1−ω
= 0 (1)

using the formula for the sum of a geometric progression. At the
same time, we can upper bound the quadratic form of LCn at v,

〈v, LCn v〉 =
n−1

∑
`=0
|ω` −ω`+1|2

= |1−ω|2 · n

≤ O(1/n2) · ‖v‖2 .

(2)
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2 In fact, it turns out that the sec-
ond eigenvalue of LCn is exactly
〈v, LCn v〉/‖v‖2 and v is an eigenvec-
tor corresponding to this eigenvalue.

3 Hint: This holds because the diagonal
of the second moment 1

4 · 11ᵀ + 1
4 · X

agrees with mean 1
2 1 and the formal

covariance Ẽ
(

x− 1
2 1

)(
x− 1

2 1
)
ᵀ = 1

4 ·X
is positive semidefinite. See exercise
below.

The last step uses |1− ω|2 = O(1/n2). It follows that the second
smallest eigenvalue of LCn is O(1/n2)2

In one of the exercises in the chapter about Max Cut you showed
that if a graph G satisfies maxcut(G) ≤ 1 − ε then every degree-
2 pseudo-distribution µ satisfies that Ẽµ fG(x) ≤ 1 − Ω(ε2). The
following lemma shows that this tradeoff is tight for cycles with
an odd number of vertices. Concretely, if n is odd then Cn is not
bipartite. Therefore, maxcut(Cn) ≤ 1− 1/n. In contrast, there are
degree-2 pseudo-distributions µ such that Ẽµ fCn(x) ≥ 1−O(1/n2).

2. Lemma (max cut pseudodistribution for the odd cycle). Let n ∈
N be odd. Then, there exists a degree two pseudo-distribution µ such that
Ẽµ fCn(x) ≥ 1−O(1/n2).

Proof. Let ω ∈ C be the n-th complex root of unity as before. Sup-
pose n = 2k + 1. Let u ∈ Cn with

(0, ωk, ω2k, . . . , ω(n−1)k) (3)

Let v, w ∈ Rn be the real and imaginary part of u so that u = v + i · w.
Let X be the n-by-n positive-semidefinite matrix,

X = vvᵀ + wwᵀ . (4)

Since Xii = v2
i + w2

i = |ui| = 1, the diagonal of X is the all-ones vector
1.

We have seen that we can specify a pseudo-distribution µ by
specifying its pseudo-expectation operator. Specifically, we will fix
the expectation operator such that

Ẽ
µ(x)

x = 1
2 1 ,

Ẽ
µ(x)

xxᵀ = 1
4 · 11ᵀ + 1

4 · X .
(5)

We leave it as an exercise to the reader to verify that the above is
indeed a valid degree two pseudo-expectation.3

It remains to estimate the pseudo-expectation of fG with respect to
µ,

Ẽ
µ(x)

fG(x) = 1
4 ∑
{i,j}∈E(G)

(vi − vj)
2 + (wi − wj)

2

= 1
4 ∑
{i,j}∈E(G)

|ui − uj|2

= 1
4 n · |1−ωk|2 ≥ n ·

(
1−O

(
1/n2

)) (6)

lec02-1_maxcut.html
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In the last step, we use that

|1−ωk|2 = (1−ω−k)(1−ωk) = 2−ωk −ω−k

= 2 + 2 cos π
n ≥ 4−O

(
1
n

)2
.

(7)

3. Exercise (degree-2 pseudo-distributions). Show that for every
vector v ∈ Rn and every matrix M ∈ Rn×n with diag(M) = v and
M− vvᵀ � 0, there exists a degree-2 pseudo-distribution µ over the
hypercube {0, 1}n with Ẽµ(x) x = v and Ẽµ(x) xxᵀ = M.

Eigenvalues of Cayley graphs

The above ad-hoc computations of eigenvalues are actually special
cases of a more general theory. Let (Γ, ·) be a group and S ⊆ Γ.
The Cayley graph corresponding to Γ and S, which we denote as
G(Γ, S), has vertices corresponding to Γ and edges a, b for every
a, b ∈ Γ such that ab−1 ∈ S ∪ S−1. The n-cycle is simply the Cayley
graph corresponding to the group Zn (integers in {0, . . . , n− 1} with
addition modulo n) and the set S = {1}.

It turns out that for every Abelian group Γ and Cayley graph
G(Γ, S), we can explicitly calculate the eigenvectors and eigenvalues
of G(Γ, S). The following series of exercises works this out, first for
cyclic groups and then for every Abelian group:

4. Exercise. Let n ∈ N and ω = e2πi/n. For every α ∈ Zn, we
define χα ∈ Cn to be the vector χα

j = ωα·j. Prove that if S ⊆ Zn,
and A is the adjacency matrix of G = G(Zn, S), then Aχα = λα · χα

where λα = ∑j∈S ωα·j. (In particular, χα is an eigenvector of A with
eigenvalue α.)

Adjacency matrices of (potentially weighted) Cayley graphs over
the group Zn are known as circulant matrices.

5. Exercise. Let Γ be an Abelian group of the form Γ = Zn1 × · · · ×
Zn`

, and let ωt = e2πi/nt . For every α = (α1, . . . , α`) ∈ Γ, we define a
vector χα ∈ CΓ (called character) such that for every j = (j1, . . . , j`) ∈ Γ

χα
j =

`

∏
t=1

ω
αt ·jt
t . (8)

Prove that if S ⊆ Γ and A is the adjacency matrix of G(Γ, S),
then every vector χα is an eigenvector of A with eigenvalue λα =

∑j∈S ∏`
t=1 ω

αt ·jt
t so that Aχα = λα · χα. .
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One of the most common instantiations of this result in computer
science is for the case that Γ is the Boolean cube {0, 1}` with the
XOR operation. In this case we can think of Γ as Z`

2, and then, since
e2πi/2 = −1, we get that the eigenvectors of the adjacency matrix of
a graph G({0, 1}n, S) have the form χα ∈ R{0,1}` where χα

β = −1〈α,β〉

with α, β ∈ {0, 1}n. The corresponding eigenvalue is ∑β∈S−1〈α,β〉.

The map that transforms a vector v ∈ CΓ from its representation
in the standard basis into its representation in the basis of characters
of Γ (which are the eigenvectors of G(Γ, S)) is known as the Fourier
transform). For more on this topic, let us point again to the textbook
(O’Donnell [2014]).

A sharper integrality gap for Max Cut

The odd cycle shows that, at least for degree 2 pseudo-distributions,
our analysis was tight up to a constant factor, but it does not yield
the optimal constant. However, there is a more sophisticated example,
due to Feige and Schechtman [2002], that yields a tight bound. Recall
that the approximation ratio was αGW = min0≤x≤1

arccos(1−2x)
πx ≈ 0.878

and was achieved at xGW ≈ 0.845.

6. Theorem (Tight integrality gap for max cut). For every ε > 0, there
exists a graph G = (V, E) such that maxcut(G) ≤ αGW · xGW + ε and
there is a degree 2 pseudo-distribution µ with Ẽµ fG(x) ≥ xGW.

Proof. Let’s think of ε as some small o(1) value that we will fix later.
Looking at the analysis of the GW rounding algorithm, we see that
to prove the theorem we need to come up with a graph G on n
vertices and a degree 2 pseudo-distribution µ on {0, 1}n such that
maxcut(G) ≤ αGWxGW + o(1) but for almost all edges {i, j} of
G, Ẽµ(xi − xj)

2 ≥ xGW − o(1). By the same calculations we did
before, if we assume Ẽµ xi = 1/2, then this corresponds to the
normalized covariance of xi and xj satisfying Ẽµ(xi − 1/2)(xj −
1/2) ≤ (ρGW + o(1))1/4 where ρGW = 1− 2xGW (note that ρGW is
roughly −0.69). Typically, we think of the graph as fixed and then
we come up with the pseudo-distribution, but for this proof we will
do this the other way around. We will first come up with µ and
then define the graph G to correspond to those pairs {i, j} in which
Ẽµ xixj is roughly equal to ρGW. Moreover, borrowing an idea from
the rounding algorithm, we will let µ be an actual distribution, but
one over Rn instead of {0, 1}n. In fact, µ will correspond to an actual
multivariate Gaussian distribution over Rn, with Eµ xi = 1/2 for
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Figure 1: In the Feige-Schechtman
graph, the vertices correspond to unit
vectors in Rd, and the neighbors of a
vector v consists of all vectors w such
that 〈v, w〉 ≤ ρ for ρ = ρGW + ε. The
figure shows the case for d = 2, where
the neighbors of v correspond to the
red arc of vectors that have at most ρ
correlation with v. The maximum cut in
such a graph is obtained by partitioning
the vertex set according to a hyperplane
going through the origin.

all i (and hence Eµ(xi − 1/2)2 = 1/4 for all i). How do we come up
with such a distribution? First note that we can make the number of
vertices n as large as we like as a function of our desired accuracy
ε, and hence we will think of n as very large. In fact, we will think
of n as very very large: so large that it is practically infinite or even
continuous! Concretely, we will identify the vertices of the graph
G with the d − 1 dimensional unit sphere Sd−1 in Rd (for some
dimension parameter d depending on the desired accuracy) - that
is the vertex set is the set of all v ∈ Rd with ‖v‖ = 1. (The one
dimensional sphere is a circle, the two dimensional sphere is the
boundary of a 3 dimensional ball, and so on..)

The set E of edges will be the set of pairs of vectors (u, v) ∈
Sd−1 × Sd−1 such that 〈u, v〉 ≤ ρGW + ε. We can think of the max cut
value of G as the maximum over all measurable subsets S of Sd−1, of
the measure of E ∩ S× (Sd−1 \ S). Ultimately, we will obtain a finite
graph by sampling n such vectors, but as long as n is large enough
(n � 2d will do) then this finite graph will inherit both the max-cut
value, as well as the pseudo-distribution value. However, the heart of
the argument happens in the continuous setting, so you can ignore
for the moment that final sampling stage.

We now need to come up with a collection of correlated random
variables {Xv}v∈Rd such that for every v ∈ Rd, Ẽ Xv = 1/2 and every
edge (u, v), the covariance of Xu and Xv is at most −ρGW + O(ε). This
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4 Both equations follow from the
rotational symmetry of a standard
Gaussian, which means that without
loss of generality v = e1, in which case
〈g, v〉 = g1 is simply a one dimensional
standard Gaussian.

collection will be very simple: we choose a random standard Gaus-
sian g ∈ Rd (i.e., g ∈ Rn is chosen with gi ∈ N(0, 1) independently
for all i), and for every v ∈ Rd, we define Xv = 1/2 + 〈v, g〉/2. Note
that E Xv = 1/2 and that E(Xv − 1/2)2 = E〈v, g〉2/4 = 1/4.4

Now the normalized covariance (subtracting the expectation
and dividing by the standard deviation) of u and v corresponds
to E〈u, g〉〈v, g〉 which by standard manipulations is the same as
E Tr(uv>gg>) (thinking of u, v, g as column vectors and hence uv>

and gg> are n× n matrices. But by linearity of trace and expectation
this is the same as Tr(uv>E gg>) and since for a standard Gaussian
g, E gg> = Id, we get that this normalized covariance is equal to
Tr(uv>) = 〈u, v〉 which equals at most ρGW + ε by our definition of the
edge set.

The above shows that we have a degree two pseudo-distribution µ

satisfying that with high probability over {u, v} ∈ E, Ẽµ(Xu − Xv)2 ≥
xGW − ε. But we still need to show that the true maximum cut value
is at most αGWxGW + o(1). Luckily, here we can “stand on the shoul-
ders of giants” and use previously known results. Specifically, by the
geometric nature of this graph, intuitively the maximal cuts would
be obtained via a gemoetric partition. Indeed, Borell [1975] (and,
independently Sudakov and Cirel′son [1974] ), proved that over the
unit sphere, when we define the edge sets in such geometric terms,
then the maximum cuts that optimize this will always be spherical
caps. That is, the set S would be of the form {v ∈ Rd : 〈v, a0〉 ≥ b0}
for some a0 ∈ Rd and b0 ∈ R. Specifically, in this case, one can show
that the bipartition that would maximize the number of cut edges
would be a balanced one (where S and Sd−1 \ S have the same measure)
and hence b0 = 0. By the rotational symmetry of the sphere (and ap-
propriately scaling b0), we can assume without loss of generality that
a0 is simply the first standard basis vector (1, 0, . . . , 0). Now, since a
random edge (u, v) ∈ E is chosen by letting v be a random vector
with correlation roughly ρGW with u, and since the first coordinate of
a random unit vector has (essentially) the Gaussian distribution with
mean zero and variance 1/n, computing the value of the cut reduces
to computing the probability that two ρGW correlated Gaussians dis-
agree in their sign. This latter quantity is exactly what we computed
in the last lecture as 1− arccos(ρGW)/π = αGW.

Based on our construction, we can see that if the final graph
has n vertices, then there is a unit vector vi associated with each
vertex i, and the pseudo-expectation operator is defined as Ẽ xixj =

1/2 + 1/2〈vi, vj〉. The resulting matrix is the sum of the psd all-1/2
matrix plus the Gram matrix (i.e., matrix of dot products) of the
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vectors {v1, . . . , vm}. It is not hard to verify that such a matrix is psd-
see also the exercises below:

7. Exercise. Prove that an n× n matrix M is a psd matrix of rank d if
and only if there exist v1, . . . , vn ∈ Rd such that Mi,j = 〈vi, vj〉.

8. Exercise. Suppose that M, N are two n × n psd matrices such
that Mi,j = 〈vi, vj〉 and Ni,j = 〈ui, uj〉. Show explicitly a tuple of
vectors (w1, . . . , wn) such that the psd matrix L = M + N satisfies
Li,j = 〈wi, wj〉.

Isoperimetry, extremal questions, and sum of squares

Figure 2: The classical isoperimetric
inequality is that the circle minimizes
the boundary among all closed curves
with the same volume

The result of (Borell [1975],Sudakov and Cirel′son [1974]) we used
above is one in a long line of work on isoperimetric inequalities and
their many generalizations. The classical isoperimetric problem is
to prove that among all shapes in the plane, the circle is the one that
minimizes the ratio of its boundary to its volume. This question has
been generalized to many other geometric spaces and notions of
volume and boundaries. Indeed, it corresponds to the question we
have already seen of finding the least expanding set in the graph: if
we think of a very fine grid graph that discretizes the plane, then the
isoperimetric problem corresponds to proving that the circle is the set
of vertices that minimizes the expansion.

Isoperimetric questions themselves are just a special case of more
general questions of finding and characterizing extremal objects. The
general setting can be thought of as follows. We have:

• Some “universe” U of possible objects (e.g., all subsets of a graph,

https://en.wikipedia.org/wiki/Isoperimetric_inequality
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all closed curves in the plane, all functions or vectors in some
space).

• Some “objective” function F : U → R (e.g., the ratio of boundary to
volume, the sum of violations of some constraints)

• Some “nice” family S ⊆ U (e.g., shifts of circles, spherical caps,
codewords)

The type of theorems we might want to prove (in increasing order
of difficulty, and, often, usefulness) would be:

• An optimality theorem: If S ∈ U is a global minimum of F(·) then
S ∈ S . Like in the isoperimetric case, such optimality theorem are
often phrased as inequalities of the form F(S) ≥ α∗ for every S ∈ U ,
where α∗ is the (typically easily computable) minimum of F(S)
among all the “nice” S ∈ S .

• A stability theorem: If S ∈ U is a “near global minimum” (i.e.,
F(S) is close to minS′∈U f (S′)) then S is “close” to some “nice”
S∗ ∈ S . The notion of “close” here of course needs to be defined
and depends on the context.

• An inverse theorem: If S ∈ U has “non trivial F(·) value” (i.e.,
F(S) is significantly smaller than the expected value of F(S′)
for a random S′) then S is “somewhat correlated” with some
“nice” S∗ ∈ S . Again, the notion of “somewhat correlated” is
context-dependent. Sometimes inverse theorems come with a
“list decoding” variant in which the condition is that the non-
trivial value of F(S) can be explained by expressing S as some
combination of a small number of “nice” objects in S where again
what is “small” and what combinations is one allowed to take.

A related question is the notion of structure vs. randomness as
discussed by Tao (see for example (Tao [2007b]; Tao [2007a]; Tao
[2008])). Given some object S ∈ U and some family of tests/objectives
F , we want to decompose S into the “structured part” that is some
combination of objects from the “nice” family S and the “random
part” which we can think of as some “noise” object N such that F(N)

is close to the expectation of F(S) over a random S ∈ U for all F ∈ F .

There are often algorithmic questions associated with such theo-
rems. One such question is the “decoding” task of finding the “nice”
S∗ that is close to an S with small F(·) value. Another is the task of,
given some description of U and F(·), certifying an optimality the-
orem. Indeed, we will see that a very interesting question is often
whether such an inequality has a low degree sum of squares proof.
Often, an algorithmic proof of an optimality theorem will imply at
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5 Hint: Start by showing the square
triangle inequality for degree 6 pseudo-
distributions. That is prove that for
every degree 6 pseudo-distribution
µ over {0, 1}n and every i, j, k ∈ [n],
Ẽµ(xi − xk)

2 ≤ Ẽµ(xi − xj)
2 + (xj − xk)

2.

least a stability theorem if not stronger results. Indeed such algo-
rithmic proofs often give an explicit process for optimizing F that
given any starting point S ends up in an optimum point. Typically,
if the starting point S already had a pretty good F(·) value then the
algorithm would presumably not take too many steps and hence its
final output will be “close” to the initial point.

At this point, when we’ve seen only one concrete example, this
discussion might feel somewhat abstract, but many important results,
including hypercontractivity, the “invariance principle”, Brascamb
Lieb inequalities, results on list decoding, the Gowers norm, and
others can be thought of as falling into this general framework. We
will see several other examples of such results in this course.

Beyond degree 2

The examples above show that the rounding algorithms of the previ-
ous lecture are tight with respect to degree two pseudodistributions.
But of course, we can run the sum of squares algorithm for larger
degrees. We do pay a price in the running time, but it remains poly-
nomial time for every constant degree, and as long as the degree is
significantly smaller than n it would still be significantly faster than
brute force.

Could it be that using larger, but still small degree, we can beat the
guarantees for max cut, graph expansion, or boolean quadratic forms
that are achieved respectively by Goemans-Willamson, Cheeger, or
Grothendieck? The short answer that we do not know. It is known
that if Khot’s Unique Games Conjecture is true (or the closely related
Small Set Expansion Hypothesis) then no polynomial (or even 2no(1)

time) algorithms can beat those guarantees. In particular, for every
d = no(1) these conjectures predict that we can obtain instances with
the same gaps as we showed in this lecture but with respect not
to merely degree 2 but to the value achieved by degree d pseudo-
distributions. However, even for d = O(1) (even d = 4) this is still
wide open. What we do know is that the same examples that we saw
in this leture do not yield such gaps. Here is one example:

9. Exercise. Let n be odd and Cn be the n-length cycle. Prove that
for every degree 6 pseudo-distribution µ over {0, 1}n, Ẽµ fCn ≤
(1− 1/n)|E|.5
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Mat. Inst. Steklov. (LOMI), 41:14–24, 165, 1974. Problems in the theory
of probability distributions, II.

Terence Tao. Structure and randomness in combinatorics. In FOCS,
pages 3–15. IEEE Computer Society, 2007a.

Terence Tao. The dichotomy between structure and randomness,
arithmetic progressions, and the primes. In International Congress
of Mathematicians. Vol. I, pages 581–608. Eur. Math. Soc., Zürich,
2007b. doi: 10.4171/022-1/22. URL http://dx.doi.org/10.4171/
022-1/22.

Terence Tao. Structure and randomness. American Mathematical Society,
Providence, RI, 2008. ISBN 978-0-8218-4695-7. doi: 10.1090/mbk/059.
URL http://dx.doi.org/10.1090/mbk/059. Pages from year one of
a mathematical blog.

http://dx.doi.org/10.1017/CBO9781139814782
http://dx.doi.org/10.1017/CBO9781139814782
http://dx.doi.org/10.4171/022-1/22
http://dx.doi.org/10.4171/022-1/22
http://dx.doi.org/10.1090/mbk/059

	Limitations of the sum of squares algorithm
	The cycle as an integrality gap for Cheeger’s Inequality and Max-Cut
	Eigenvalues of Cayley graphs
	A sharper integrality gap for Max Cut
	Isoperimetry, extremal questions, and sum of squares
	Beyond degree 2

