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1 More surprisingly, Raghavendra [2008]
showed that one can also do this in the
other direction—use integrality gaps to
obtain certain types of hardness results.
We will talk about this result later.

Higher-degree integrality gaps: from computational hardness to
limitations of sum-of-squares

We’ve seen integrality gaps for the degree 2 sum-of-squares algo-
rithm, but so far have not seen any limitations for, say, degree 10 or
even degree

√
n sum-of-squares. However, since we believe certain

NP problems (e.g., SAT) require super-polynomial, and in fact even
exponential time (this is known as the exponential time hypothesis), we
certainly think there should be polynomials f : {0, 1}n → R such that
there is a gap between minx∈{0,1}n f (x) and the minimum of Ẽµ f
over all degree o(n) pseudo-distributions.

It turns out that the computational hardness results can be used
as a guide to obtain sum of squares integrality gaps.1 In particular,
a canonical result by Håstad shows strong hardness for the Max-
3XOR problem: given a collection of linear equations modulo 2
in n variables, with 3 variables in every equation (i.e. equations
of the form xi + xj + xk = ai,j,k mod 2), find x that satisfies the
largest possible fraction (called the (optimal) value of the instance) of
equations. This result can be stated as follows:

1. Theorem (Håstad’s 3XOR hardness). For arbitrarily small constants
ε, δ > 0, it is NP-hard to distinguish whether a given instance of Max-
3XOR has value at least (1− ε) or at most 1

2 + δ.

As in the case of Max cut that we saw before, it is easy to express
Max 3XOR as a polynomial optimization problem. A constraint
xi + xj + xk = ai,j,k is satisfied if and only if the polynomial (1−
2xi)(1− 2xj)(1− 2xk)(1− 2ai,j,k) (whose value on a binary input is
either +1 or −1) is identical to +1 over x ∈ {0, 1}n. We can thus
express fraction of constraints of ψ (seen as a collection of triples
{i, j, k} with an associated label ai,j,k) satisfied by any x ∈ {0, 1}n to
be the cubic polynomial

fψ(x) = 1
2 + 1

2|ψ| ∑
{i,j,k}∈ψ

(1− 2ai,j,k)(1− 2xi)(1− 2xj)(1− 2xk) . (1)

Thus, the task of computing the value of ψ is equivalent to the task of
maximizing fψ over all x ∈ {0, 1}n.

Observe that for any Max-3XOR instance , one of the all-1s or the
all-0s assignment always satisfies at least 1

2 of the equations. On the
other hand, one can always efficiently check if a given system of
linear equations is exactly satisfiable by using Gaussian Elimination.
Thus Håstad’s result shows that beating the trivial algorithms above
is hard in the worst-case. As has become common since, Håstad’s



Boaz Barak and David Steurer 2

2 The “sum-of-squares hardness” of
Max 3XOR was proven by Grigoriev
[2001b] who phrased it as a lower
bound in the Positivstellensatz proof
system. It was later rediscovered by
Schoenebeck [2008] who also observed
that it immediately implies a similar
lower bound for Max 3SAT as we will
see later on in this section.

proof of this result shows a reduction from a problem known as
Label Cover to Max-3XOR. This reduction has only a linear blow-up
- a Label Cover instance on n variables is reduced to a Max-3XOR
instance on O(n) variables. Moshkovitz and Raz [2008] showed that
there is a reduction from 3SAT to Label Cover with only a quasi-
linear blow-up. Gluing the above two reduction thus gives a quasi-
linear reduction from 3SAT to Max-3XOR. Thus, if we make the
reasonable assumption that 3SAT doesn’t have a 2o(n)-time algorithm
(i.e. the exponential time hypothesis) then, the sum-of-squares algorithm
of degree n0.99 (say) should not be able to distinguish between (1− ε)

and 1
2 + δ satisfiable instances of Max-3XOR.

Working in the sum-of-squares framework allows us the benefit of
verifying this prediction unconditionally as the next theorem shows.2

2. Theorem (Grigoriev’s 3XOR sos hardness). For every constant
ε > 0, and large enough n, there is an instance ψ of Max-3XOR over n
variables such that:

1. Every assignment x ∈ {0, 1}n satisfies at most 1
2 + ε fraction of the

equations in ψ.

2. There exists a pseudodistribution of degree Ω(n) that is consistent with
the constraints {x2

i − xi = 0} for every i ∈ [n] and {(1− 2xi)(1−
2xj)(1 − 2xk) = 1 − 2ai,j,k} for every constraint xi + xj + xk =

ai,j,k mod 2 in ψ.

Notice that this result is stronger than what is predicted by the
NP-hardness result of Håstad and asserts that sos cannot distinguish
between a perfectly satisfiable instance and an instance in which only
1
2 + ε fraction of the equations are satisfiable. Indeed, an analogous
NP hardness result cannot hold (unless P = NP) since finding
out whether an instance of linear equation modulo 2 is perfectly
satisfiable can of course be done in polynomial time using Gaussian
Elimination. This is rather disappointing - how can an allegedly
strong algorithm like sos not simulate a simple efficient procedure
such as Gaussian Elimination? One possible answer is that as a
continuous relaxation, unlike Gaussian elimination, the sos algorithm
cannot really distinguish between a perfectly satisfiable and one that
is 1− o(1) satisfiable, and hence cannot solve the 1 vs 1/2 + ε problem
any better than the 1− ε vs 1/2 + ε variant.

One corrollary of this theorem (or, more accurately, its proof) is
that there is no generalization of the quadratic sampling lemma
we saw to matching degree 3 moments, even if we significantly
strengthen our assumption on the pseudo-distribution to an Ω(n)
degree bound. We will work this out in Exercise 11 below.
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Proving Grigoriev’s theorem

In order to prove Theorem 2, we need to provide an instance ψ of
3XOR on n variables satisfying:

• Soudnness: No assignment x ∈ {0, 1}n satisfies more than 1/2 + ε

fraction of ψ’s constraints.

• Completeness: There exists a degree Ω(n) pseudo-distribution µ

such that Ẽµ fψ = 1.

We will construct ψ by simply choosing it at random: for C = C(ε)
(that does not depend on n), we choose a random set of triplets
{i, j, k} by including every triplet in ψ independently with probability
C/n2. For each {i, j, k} in ψ, we choose ai,j,k uniformly at random
from {0, 1}. It is useful to to describe ψ as (G, b) where G is the
bipartite graph with m vertices on the left (corresponding to the
randomly chosen triplets) and n vertices on the right (corresponding
to the variables) and b is a vector in {0, 1}m. Every left vertex of G
has degree three and if the `th triple in ψ is {i, j, k} then the `th left
vertex in G will be connected to i,j,and k and we set b` = ai,j,k.

Showing that the fraction of constraints satisfied by any assign-
ment in ψ is close to 1

2 is easy and only needs that the “right hand
sides” of the equations, a ∈ {0, 1}m are chosen at random.

3. Lemma (Soundness). For any bipartite graph G with m > 9n/ε2

vertices on the left, n on the right and all left-degrees 3, with probability at
least 1− 2−n over the choice of b ∈ {0, 1}m, every assignment x ∈ {0, 1}n

satisfies at most 1
2 + ε fraction of the constraints in ψ = (G, b).

Proof. Fix any x ∈ {0, 1}n and ` ∈ [m] let Y` be the random variable
(over the choice of b ∈ {0, 1}m that equals 1 if xi + xj + xk = b`(
mod 2) and 0 otherwise, where {i, j, k} are the neighbors of `. The
fraction of satisfied constraints is 1

m ∑m
`=1 Y`.

The random variables Y1, . . . , Ym are i.i.d Bernoulli variables each
with expectation 1/2 and so by the Chernoff bound

P
b
[

m

∑
`=1

Yi > (1/2 + ε)m] < 22−ε2m/3 . (2)

Thus by a union bound, the probability that there is an x that satis-
fies more than 1

2 + ε fraction of constraints of ψ can thus be upper
bounded by 2n+12−ε2m/3, which, for m > 9n/ε2 is at most 2−n as
desired.
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While this proof is very simple, note that it does use the dreaded
Chernoff + union bound combination (a.k.a the probabilistic method)
and so we are outside the realm of the “Marley Corollary” and have
no guarantee that we would be able to embed it in a low degree sum
of squares argument. Indeed, Grigoriev’s theorem exactly shows that
this can’t be done.

Constructing the pseudodistribution

The construction of a pseudodistribution µ that satisfies all the con-
straints of ψ is more interesting. Our goal is to build a pseudodis-
tribution that “pretends” as if the instance ψ constructed above is
perfectly satisfiable. Denote by χi(x) the function 1− 2xi and by χS(x)
the function ∏i∈S χi(x). Note that the functions {χS}|S|≤d form a
basis for the subspsace of all polynomials of degree at most d, and
hence to specify the pseudo-expectation operator corresponding to
a degree d pseudo-distribution µ it is sufficient to specify Ẽµ χS for
every |S| ≤ d.

We start by observing that certain “hard” constraints are forced
by the fact that our pseudo-distribution pretends to satisfy all the
constraints of ψ. For example, if xi + xj + xk = ai,j,k( mod 2) is a
constraint in ψ, then we have no choice but to set Ẽµ χi,j,k = 2ai,j,k − 1.
As another example, suppose that ψ contains the constraints x1 +

x2 + x3 = 1( mod 2) and x3 + x4 + x5 = 0( mod 2) then we can
sume these two equations and conclude that x1 + x2 + x4 + x5 = 1(
mod 2) and hence we should expect our pseudo-distribution to
satisfy Ẽµ χ1,2,4,5 = −1.

To complete the definition of the pseudo-expectation, we need to
to define Ẽµ χS for every |S| ≤ εn. This raises two questions:

• How should we set Ẽµ χS for any S such that Ẽµ χS is not set via
the above hard constraints?

• Will we have enough “freedom” to force such constraints on Ẽ or
would we run into contradictions, i.e., constraints as above that
force us to give two differing values to Ẽµ χS for some S?

For the first question, we will use a general principle - our own
home-brewed analog of Einstein’s maxim.

Pseudodistributions should be made as random as possible but no ran-
domer.

How does this help us answer the first question above? We will
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3 See also this course of James Lee on
entropy optimality as well as his blog
posts on this topic.

4 This is actually the same as assuming
that our prior distribution was the uni-
form distribution, and then updating to
the distribution minimizing the from it
that satisfies our observations.

pretend that our pseudodistribution looks like the uniform distri-
bution over the hypercube subject to the hard parity constraints
obtained above. This amounts to setting Ẽµ χS to 0 for every S for
which the value is not already decided. Another way to justify this
approach is through Jaynes’ maximal entropy principle.3 This states
that if we are trying to guess some unknown x ∈ {0, 1}n, we should
assume that x comes from the distribution of maximum entropy
consistent with the observations we have made.4 We will see that this
“Bayesian view” will serve as a useful guide in problems (such as the
planted clique) where we have to deal with a combination of “hard”
and “soft” constraints, and where a simplistic strategy that pretends
that random variables are either identical or independent will lead to
a pseudodistribution that is “too random” and land us into trouble.

The second question is not at all trivial. After all, the instance
ψ is in fact unsatisfiable which in particular means that by adding
together linear equations we can in fact achieve a contradiction.
Nevertheless, we will see that we have enough freedom whenever the
bipartite graph G associated with the instance ψ satisfies a sufficiently
strong notion of expansion.

4. Definition (expansion). A bipartite graph G with all left degrees 3
is said to be (t, β)-expanding if every subset T of vertices on the left
of size |T| ≤ t satisfies |Γ(T)| ≥ β|T|, where Γ(T) denotes the set of
neighbors of vertices in T in G.

As one might expect, random bipartite graphs enjoy excellent
expansion:

5. Lemma (expansion of random graphs). For G constructed above
with m = Cn vertices for some constant C and δ > 0, there exist constant
η > 0 (depending on C) such that with probability at least 0.9, the graph G
is (ηn, 2− δ)-expanding.

Proof. The proof is a simple application of the Union bound. Let
β = 2− δ. We estimate from above, the probability that a collection of
s = ηn constraints cover at most βs variables by:(

n
βs

)(
(βs

3 )

s

)
(C/n2)s, (3)

Using standard upper estimates on the binomial coefficients above,
this is at most:

(
ne
βs

)βs(
eβ3s2

6
)s Cs

n2s . (4)

The expression above can be simplified to be at most:(
(

s
n
)δ4Ce2

)s
, (5)

http://homes.cs.washington.edu/~jrl/teaching/cse599swi16/
https://tcsmath.org/tag/entropy/
https://tcsmath.org/tag/entropy/
https://en.wikipedia.org/wiki/Kullbackdivergence
https://en.wikipedia.org/wiki/Principle_of_maximum_entropy
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5 Any expansion greater than 1.5 will be
good enough for us

which is at most 0.1 for η < (1/4Ce2)10.

6. Exercise. Prove that for every η > 0, no 3-left-regular bipartite
graph with n right vertices and Ω(n) left vertices is an (ηn, 2) ex-
pander.

We note that it is known how to construct deterministically left-
degree d = O(1) bipartite graphs expansion (1− ε)d > d/2 (Capalbo
et al. [2002]) (see also chapter 10 in (Hoory et al. [2006]) and chapter 6

in (Vadhan [2012])). Such graphs can be used to construct integrality
gaps for d-XOR instances, though we still don’t know how to avoid
the step of choosing the “right hand side” at random (i.e., Lemma 3).

We now go on to the most interesting step—defining the pseu-
dodistribution following our intuitive discussion based on Einstein’s
maxim above. We will work with ψ = (G, b) such that G is (ηn, 1.7)-
expanding5 and construct a degree d = ηn/10-degree pseudodistri-
bution. This construction doesn’t depend on the “right hand sides"
of the equations and only needs expansion. To emphasize this, we
record the construction as the following lemma.

7. Lemma (pseudodistribution-from-expansion). Let ψ(G, b) be an
(ηn, 1.7)-expanding instance of Max 3-XOR. There exists a pseudodistri-
bution of degree d ≥ ηn/10 that satisfies the constraints x2

i = xi and
χS` = b` for every ` and S` being the set of neighbors of the `th left vertex
in G and b` the corresponding RHS of the XOR constraint.

We will build the pseudodistribution by describing the associated
pseudoexpectation Ẽ. As mentioned above, it is enough to specify
the values of Ẽµ χS for S ⊆ [n], |S| ≤ d. Let d = ηn/10, Γ(`) be the 3
neighbors of any left vertex ` in G and S⊕ T denote the symmetric
difference of sets S, T ⊆ [n]. We will use the following algorithm to
set values of Ẽµ χS for |S| ≤ d.

• Set Ẽ 1 = 1.

• For every ` ∈ [m], let Ẽ[χΓ(`)(x)] = 1− 2b`.

• Repeat the following until impossible: Choose S, T such that Ẽ χS

and Ẽ χT have already been set and |S∆T| ≤ d. If Ẽµ χS∆T is
already defined and doesn’t equal

(
Ẽ χS

) (
Ẽ χT

)
, halt and declare

failure. Otherwise, set Ẽ χS∆T =
(
Ẽ χS

) (
Ẽ χT

)
.

• For every S, |S| ≤ d such that Ẽ χS was not set in the first two
steps, set Ẽ χS = 0.

We will show that Ẽ defined above is a valid pseudoexpectation.
The next lemma shows that the defining algorithm above never
returns failure if G has good enough expansion.



Proof, beliefs, and algorithms through the lens of sum-of-squares 7

6 Note that since the instances we
are interested in are unsatisfiable,
it is certainly possible to derive the
equations, say, x1 = 1 and x1 = 0,
from the original constraints, but
the question is whether it is possible
to do so while never requiring an
intermediate equation involving more
than d = εn variables.

8. Definition (Degree-d derivation). Let G = ([m], [n], E) be a bipar-
tite graph as above. For every set S with |S| ≤ d, we define a degree d
derivation of S to be a sequence T0, . . . , Tt of subsets of [m] such that

• T0 = ∅,

• ∆`∈TΓ(`) = S where as above for every left vertex ` ∈ [m], Γ(`) ⊆
[n] denotes the set of neighbors of `,

• for every i ∈ {1, . . . , t}, |∆`∈Ti
Γ(`)| ≤ d,

• for every i ∈ {1, . . . , t}, there exist j, k ∈ {0, . . . , i − 1} such that
Ti = Tj∆Tk.

For every S ⊆ [n] and σ ∈ {0, 1}, we say that the equation
∑i∈S xi = σ( mod 2) is d-derivable from the instance (G, a) if there
exists a degree-d derivation of S such that ∑`∈Tt a` = σ( mod 2).

Note that deriving an equation in degree d means that there is
a way to add up the basic equations ∑i∈Γ(`) xi = ai( mod 2) to
obtain the resulting equation in a way that no intermediate equation
ever involves more than d variables. We say that an instance (G, a)
contains a degree d contradiction if there exists some S ⊆ [n] with
|S| ≤ d such that we can d-derive both the equation ∑i∈S xi = 0(
mod 2) and the equation ∑i∈S xi = 1( mod 2) from (G, a).6

9. Lemma (Pseudo expectation is well defined). Suppose G is
(100d, 1.7)-expanding. Then for every a ∈ {0, 1}m, (G, a) does not contain
a degree-d contradiction. Consequently, the algorithm above never halts and
returns failure.

Before proving Lemma 9, we first show why it implies that Ẽ

defined by the algorithm is indeed a valid pseudoexpectation and
hence complete the proof of Theorem 2.

Proof of Theorem 2. Let (G, a) be the instance corresponding to ψ

and Ẽ = Ẽµ be the pseudo-expectation operator we defined above.
By construction, Ẽ is a linear operator on degree ≤ d polynomials
satisfying Ẽ 1 = 1. Also, since every ` ∈ [m], our procedure defines
Ẽ χΓ(`) = 1− 2ai, it is an easy calculation to show that via linearity of
expectation the expected fraction of satisfied constraint Ẽ fψ equals
1. Therefore all that’s left is to show that the positivity condition,
which as usual is the most challenging. Namely, we need to show
that Ẽ p2 ≥ 0 for any polynomial p of degree at most d/2.

Define an equivalence relation on {S ⊆ [n] | |S| ≤ d/2} where
S ∼ T if Ẽ[χS∆T ] 6= 0 (i.e, Ẽ[χS∆T ] is defined in the process above). It
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is easy to verify that this is indeed an equivalence relation (and thus
reflexive, i.e. S ∼ S and transitive: if S ∼ T, T ∼ U then S ∼ U) and
thus partitions the set {S ⊆ [n] | |S| ≤ d/2} into equivalence classes
C1, C2, . . . , CN , and choose for every Ci we choose Si ∈ Ci to be some
representative member.

Next, we claim that if S, T ∈ Ci, then Ẽ χSχT =
(
Ẽ χS∆Si

) (
Ẽ χT∆Si

)
.

Indeed, since S, T ∈ Ci, both Ẽ χS∆Si and Ẽ χT∆Si are nonzero, which
means that under our definition of the pseudo-distribution

Ẽ χS∆T = Ẽ χS∆Si χT∆Si =
(
Ẽ χS∆Si

) (
Ẽ χT∆Si

)
. (6)

Hence, if we let p be a polynomial of degree at most d, we can
write p = p1 + . . . + pN where pi consists of only monomials in the
equivalence class Ci. By the way we defined our equivalence relation,
is not hard to see that Ẽ pi pj = 0 if i 6= j. Hence

Ẽ p2 = Ẽ(∑ pi)
2 = ∑

i,j
Ẽ pi pj = ∑

i
Ẽ p2

i . (7)

But every polynomial pi can be written as ∑S∈Ci
pSχS, and then

one can see that

Ẽ p2
i = Ẽ( ∑

S∈Ci

pSχS)
2 = ∑

S,T∈Ci

pS pT Ẽ χSχT . (8)

But by what we claimed above, the RHS of Eq. (8) equals

∑
S,T∈Ci

pS pT
(
Ẽ χS∆Si

) (
Ẽ χT∆Si

)
=

(
∑
S

pS Ẽ χS∆Si

)2

≥ 0 (9)

We now prove Lemma 9.

Proof of Lemma 9. Suppose, towards a contradiction, that there exists
some S such that we can derive both ∑i∈S xi = 0( mod 2) and
∑i∈S xi = 1( mod 2) using degree d derivations. Then by combining
these two together, we can derive using a degree 2d derivation that
∑i∈∅ xi = ∑i∈(S∆S) xi = 1( mod 2). Let T1, . . . , Tt be this derivation,
satisfying ∆`∈Tt Γ(`) = ∅. This means that that every neighbor of Tt

has an even number of (and in particular at least two) edges from
Tt to it. Since there are 3|Tt| edges exiting Tt, we get that |Γ(Tt)| ≤
1.5|Tt| and hence by the expansion property of G this means that
|Tt| ≥ 100d.

Thus to get a contradiction, it is enough to prove that for every i,
|Ti| ≤ 10d. Indeed, suppose otherwise and let i be the smallest i such
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7 Indeed, if out of Ti’s more than 1.7|Ti |
neighbors there there are more than
1.3|Ti | vertices with two or more edges
going to Ti then we would get that Ti
has more than 3|Ti | edges leaving it,
which is of course a contradiction.

that |Ti| > 10d, then Ti = Tj∆Tk for some k, j < i and in particular
|Tj|, |Tk| ≤ 10d. But this means that |Ti| ≤ 20d which contradicts the
fact that, as part of a 2d-derivation, it must satisfy |∆`∈Ti

Γ(`)| ≤ 2d.
Indeed, by the expansion of the graph, the 3|Ti| edges leaving Ti

touch at least 1.7|Ti| vertices, which means that there is a set S′ ⊆ [n]
of at least 0.4|Ti| ≥ 4d right vertices that have only a single neighbor
in Ti.7 But such a set S′ is contained in ∆`∈Ti

Γ(`) (can you see why?),
contradicting the fact that the latter set has at most 2d elements

With this we have completed the proof of Theorem 2.

Lower Bounds for Refuting Random 3XOR

Our proof of Grigoriev’s theorem in fact ends up proving something
stronger - a lower bound for refuting random 3XOR instances. In the
refutation problem, we are given an instance defined by randomly
generated 3-variable linear equations modulo 2 (i.e. both the set of
variables and the “right hand sides” of each equation are chosen uni-
formly at random) and are asked to certify that the resulting instance
is not satisfiable (weak refutation) or better yet, to certify that no more
than some fixed constant fraction of the equations can be satisfied
simultaneously (strong refutation) with high probability. The proof of
Grigoriev’s theorem shows that random 3XOR instances with Θ(n)
equations cannot even be weakly refuted by the SoS algorithm. The
next exercise shows a simple generalization of this analysis to get a
more general lower bound for the refutation problem.

10. Exercise (Expansion of Random Bipartite Graphs with super-lin-
ear vertices). Fix ε > 0. Let G be a bipartite graph with the number
of left vertices L is n1.5−ε and the right vertices R of size n with each
left-degree being 3. Show that G satisfies (n−1+Θ(ε), 0.1)-expansion
with probability at least 1− 1

n .

Conclude that with high probability for a random 3 XOR instance
with n1.5−ε equations, there’s a degree d (for d = nΘ(ε)) pseudodis-
tribution that is consistent with all the equations and {x2

i = xi} for
every i.

Ruling out a “cubic sampling lemma”

As mentioned before, the quadratic sampling lemma, giving a distri-
bution (albeit over Rn instead of {0, 1}n) matching specified degree
two moments, is one of the most useful tools in rounding sos-based
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8 Hint: Show that there exists a set
N of size at most 2O(n) such that for
every x ∈ Rn with ‖x‖ ≤ 10 there
exists x′ ∈ N with ‖x − x′‖ < 0.001.
Then show that if there is no x′ ∈ N
satisfying Eq. (11) then there is no
x′ ∈ Rn satisfying the relaxed version of
Eq. (11).

algorithms, as well as in many other areas, including finance and
forecasting, where one needs to generate probabilistic models match-
ing some given parameters. It turns out that the proof of Theorem 2

establishes that we cannot generalize this to higher moments:

11. Exercise (No cubic sampling lemma). Prove that there exists some
δ > 0 such that for every n, there is a degree δn pseudo-distribution
µ over {0, 1}n such that there does not exist an actual distribution ρ

over Rn satisfying
∣∣Eρ xixjxk − Ẽµ xixjxk

∣∣ < 0.001 for all i, j, k. You
can do so by following the steps below:

1. Prove that if there exists a distribution ρ as above then it satisfies
the following condition:∣∣∣∣Eρ χS − Ẽ

µ
χS

∣∣∣∣ < 0.1 for all |S| ≤ 3. (10)

2. Prove that if (G, a) and µ are a 3XOR instance and a pseudo-
distribution as in Grigoriev’s proof, then if there is an actual
distribution ρ satisfying Eq. (10) then there exists a vector x ∈ Rn

satisfying:

‖x‖ ≤ 10 and 1
m ∑

`

χΓ(`)(x)(1− 2a`) ≥ 0.01 . (11)

3. Prove that for every set N ⊆ Rn such that ‖x‖ ≤ 10 for every x ∈
N, if we select at random a 3XOR instance with C > 100 log |N|/ε2

constraints then with probability at least 0.9 there will not exist an
x ∈ N satisfying Eq. (11).

4. Prove that if there is some C such that if we select at random a
3XOR instance with Cn constraints then with probability at least
0.9 there will not exist x ∈ Rn satisfying Eq. (11) (perhaps with
0.01 replaced by 0.02).8

5. Use this to complete the proof of the exercise.

The probabilistic method and the “Marley Corollary”

We have previously humorously referred to the “Marley Corollary”
as roughly saying that “if you proved a statement X without using
the probabilistic method, then you should be able to prove it with a
low degree sos proof”. This is not meant as a “law of nature” that
always needs to hold, but rather as a heuristic rule of thumb that
is helpful when you look at some particular statement that you
know (or have strong reasons to believe) that is true, and want to
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9 For example, if you use Gaussian elim-
ination to prove that for some instance
of m equations, every assignment satis-
fies at most m− 1 of them, then you can
of course via sos the trivial statement
that every assignment satisfies at most
m equations.
10 Indeed perhaps we already do:
one nice open question is to find out
whether for the lossless ledt-degree-d
expanders of (Capalbo et al. [2002])
there exists a degree Ω(n) distribution
that pretends to be over sets with
expansion at most 0.51d. This would
give a deterministic construction of a
robust integrality gap.

understand how likely is it to be provable within the low degree sos
framework. Nevertheless, now that we have seen Theorem 2, this
might be a good point to pause and reflect on how well this heuristic
matches reality.

A priori Theorem 2 seems to directly contradict Marley’s Corollary.
If we generate some random 3XOR instance (G, a), then with very
high probability it will be unsatisfiable, and in fact we can easily
certify this fact via Gaussian elimination and hence prove it without
any appeal to the probabilistic method. Yet, by Theorem 2, there will
be no o(n) degree sos proof for this fact.

In fact, using similar ideas to those he used to prove Theorem 2,
Grigoriev [2001a] showed that for any odd n there is no o(n) degree
sos proof for the following simple statement minx∈{0,1}n(∑n

i=1 xi −
n
2 )

2 ≥ 1/4.

That is, sos cannot even succinctly certify the fact that you can’t
divide equally divide eleven toys between two children.

The main reason we appeal to the probabilistic method for sos
hardness is to generate robust integrality gaps. For example, do not
at the moment have a deterministic construction of a 3XOR instance
such that every assignment satisfies at most 0.9 fraction of the equa-
tions, but there is no sos proof that one can’t satisfy 0.99 fraction.
In this sense, the “Marley Corollary” should be rephrased as “if
you proved a statement X without using the probabilistic method,
then you should be able to prove a slightly quantitatively weaker
statement X′ with a low degree sos proof”.9 Yet, even this corollary
should be taken with a grain of salt. Just like we have deterministic
constructions of lossless expanders, we may eventually get determin-
istic constructions of such robust integrality gaps.10 Yet the fact that
it is so hard to come up with such examples is a hopeful sign and
justifies the methodology of pretending that pseudo-distributions are
actual distributions in algorithm design.

Another critique of the “Marley Corollary” is that it may be too
weak. After all, when we use the probabilistic method to show that
with high probability an object I from a distribution D has some
property P it does not give us a mathematical proof that a particular
I sampled from D has P. For example, it is reasonable to conjecture
that there does not exist any polynomial sized proof, no matter what in
proof system, for a random 3XOR instance (G, a) that is as sampled
in the proof of Theorem 2 (see (Feige [2002])). This can be thought
of as an average case version of the conjecture that NP 6= coNP.
So, one could claim that the corollary should be phrased as “if you
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11 As remarked above, we would not
expect this to be universally true since

it would mean that sos is an instance
optimal proof system. Indeed, it is quite
possible that one can deterministi-
cally generate robust integrality gap
instances using some “un-natural” tools
from pseudo-randomness, such as those
used in the construction of (Capalbo
et al. [2002]) or constructions of Ramsey
graphs, multiple source extractors and
related objects (e.g., see (Chattopad-
hyay and Zuckerman [2016]) and the
references therein).

have any way to certify a statement X then you should be able to
certify a weaker statement X′”.11 Nevertheless, since the probabilistic
method is the most typical way one generates statements that we
believe are true but have no certificate for, the current phrasing of
the corollary seems like a useful rule of thumb. Note also that while
the use of the probabilistic method is a sign one should be careful,
it does not automatically rule out the existence of a low degree
sos proof. Often the same ideas that can be used to derandomize
probabilistic constructions, such as replacing the uniform distribution
by a distribution with limited independence, can be used to find
short sos proofs to statements that are originally proven (or, more
accurately, given evidence for) by the probabilistic method.

Reductions within the sum-of-squares framework

We just saw how NP-hardness inspires strong sos hardness for Max
3XOR. One extremely successful way of obtaining new NP-hardness
results is by using reductions. One could hope to import this tech-
nology to the sos framework to obtain new hardness results. Luckily,
this can indeed be done in a fairly generic way, as we show in this
section.

We begin with an immediate corollary of Grigoriev’s Theorem that
shows sos hardness for the Max 3SAT problem, where the constraints
have the form yi ∨ yj ∨ yk where each yi (known as a literal) is either
some variable xi or its negation.

12. Theorem (sos hardness for Max 3SAT). For every constant ε > 0,
and large enough n, there is an instance ψ of Max-3SAT over n variables
such that: 1. Every assignment x ∈ {0, 1}n satisfies at most 7

8 + ε fraction
of the constraints in ψ. 2. There exists a pseudodistribution of degree Ω(n)
over {0, 1}n that that satisfies in expectation all of the constraints of ψ.

Proof. We construct the instance by generating a random bipartite
graph G as in Grigoriev’s theorem. For every left vertex ` with edges
to {i, j, k} on the right, we choose a`,i, a`,j and a`,k uniformly at ran-
dom and independently from {0, 1}n. The 3SAT instance ψ is then
defined so that the `th constraint is given by yi ∨ yj ∨ yk = 1 where
a`,i (and similarly for j and k) decides whether yi = xi(when a`,i = 0)
or ¬(xi) (when a`,i = 1). By essentially the same argument as for
Lemma 3, we can argue that for any bipartite graph G as above with
m > 9n/ε2 left vertices and all left degrees 3, choosing a`,is uniformly
at random ensures that with probability 1− 2−n, every assignment
x ∈ {0, 1}n satisfies at most 7

8 + ε fraction of the constraints in ψ.
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To construct a pseudodistribution that satisfies all the constraints
of ψ, we work with a 3XOR instance where corresponding to the `th
triple (i, j, k) and the corresponding a`,i, a`,j and a`,k we include the
3XOR constraint xi + xj + xk = a`,i + a`,j + a`,k( mod 2).

Observe that if this equation is satisfied then in particular the
corresponding OR constraint is satisfied as well (this follows from the
simple equation 0 + 0 + 0 = 0( mod 2)). Moreover, thethe bipartite
graph associated with the 3XOR instance is the same as that for the
3SAT instance- i.e., random - and thus enjoys expansion properties as
in Lemma 5. Thus the same pseudo-distribution we used in the proof
of Grigoriev’s Theorem to works for the 3SAT instance.

The sum-of-squares PCP Theorem

The starting point of most reductions that prove NP-hardness of ap-
proximation is the famous PCP Theorem (standing for probabilistically
checkable proofs). This theorem gives an NP-hardness of approxima-
tion result for what is known as the Max-P or Constraint Satisfaction
problem (CSP). Given P : {0, 1}k → {0, 1} (which is known as a predi-
cate), we define a Max-P instance ψ to be a collection of constraints of
the form P(yi1 , yi2 , . . . , yik ) = 1 for some literals yi1 , . . . , yik . The goal
is to find an x ∈ {0, 1}n that satisfies as many of the constraints as
possible.

An analog for the sos framework was first developed by Tulsiani
who observed that the proof of Theorem 2 generalizes to Max-P
problem for any nice subspace predicate P. We say that V ⊆ GF(2)k

is a nice subspace if every non-zero u ∈ V⊥ has Hamming weight
at least 3. We say that P is a nice subspace predicate if there is a
nice subspace V such that P(x) = 1 iff x ∈ V. By choosing V to be
subspace of GF(2)k spanned by the codewords of the Hamming code,
Tulsiani [2009] proved the following:

13. Theorem (sos hardness for Nice-Subspace CSP, aka sos PCP).
Let k, ε > 0 be given. There exist β = O(2k/ε2), c = Ω(1/β25) such
that there’s an instance ψ of Max-P problem for a k-variate predicate P
with at most 2k satisfying assignments on n � 1/c variables and m =

βn constraints such that: * Every assignment x ∈ {0, 1}n satisfies at
most 2k

2k + ε fraction of the constraints of ψ. * There exists a degree cn
pseudodistribution {x} that satisfies in expectation all of the constraints of
ψ.

We omit the proof of Theorem 13 here though it follows from
the same argument as above. The key property used is that if V ⊆

https://en.wikipedia.org/wiki/PCP_theorem
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12 The necessary part is true for ran-
dom instances but not for worst case
instances in general, right? I think
there are non-pairwise-independent
predicates for which we can construct
degree 2 (and also higher degree, but
this may not have been written down
somewhere) gap instances.

GF(2)k is a nice subspace then the uniform distribution over V is a
pairwise independent distribution over GF(2)k (or, equivalently, {0, 1}k).
We will see in a future lecture that this is a necessary and sufficient
condition12 to obtaining such an integrality gap result.

Using Reductions: sos hardness of Max Independent Set

We next consider the case of the Max Independent Set problem as an
illustrative example of how NP-hardness reductions can be com-
posed with the above result for the Max-P problem to yield new sos
hardness results.

Let us first discuss the broad outline of how such a hardness result
would work. The following discussion, though specialized to the
case of Max Independent Set here, is entirely generalizable to any
situation where there is a known reduction from Max-P problem to
the problem of interest.

The idea of the construction is to analyze the standard NP-
hardness reduction from Max-P problem to the independent set
problem. In obtaining NP-hardness for independent set using this
methodology, we show two claims:

1. Soundness: If the starting instance of Max-P has a low value, then
the Max Independent Set instance output by the reduction also has
a low value.

2. Completeness: If the starting instance of Max-P has a high-value,
then the Max Independent Set instance output by the reduction
also has a high value.

Ultimately, the gap between the values of the indepedent set
instances in the completeness and soundness claims decides the final
inapproximability ratio obtained.

Suppose now, instead of starting from the NP-hardness, we start
from the sos hardness of approximating the Max-P problem and
obtain an Max Independent Set instance by applying the reduction
to the sos-hard instance of Max-P. That is, we take an integrality
gap instance I of Max-P, which in actuality has low value, but has
a pseudo-distribution µ that pretends that it has high value, and
use the NP-hardness reduction to map it to an instance I′ of Max
Independent Set. We want to show that I′ is an integrality gap for
Max Independenet Set. To do this, we again need to argue two
claims:
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1. Soundness: The resulting Max Independent Set instance I′ output
by the reduction has a low value. This actually is a direct corollary
of the soundness property of the reduction: since I had low value
as a Max-P instance, I′ will have low value as a Max Independent
Set instance.

2. Completeness: In the sos setting, it is the (usually trivial) com-
pleteness case requires some work. We must show that starting
from a pseudodistribution that pretends that the Max-P instance
is perfectly satisfiable, we can produce a pseudodistribution that
satisfies the constraints of the Max Independent Set polynomial
optimization program and pretends that the size of the Max Inde-
pendent Set in it is higher than the actual value.

The next three exercises develop simple tools to analyze such
reductions.

14. Exercise (Porting low-degree reductions). Let R be a Karp reduc-
tion from a polynomial optimization problem Q1 to a polynomial
optimization problem Q2 over the Boolean hypercube. Suppose fur-
ther that for any instance ψ of Q1 and any x that is a feasible for ψ,
there’s a y that is feasible for R(ψ) and that for each j, yj = f j(x) for
a degree ≤ t polynomial f j. Show that if there’s a degree d pseudodis-
tribution x feasible for the instance ψ of Q1 then there’s a degree d/t
pseudodistribution over y feasible for instance R(ψ) of Q2.

15. Exercise (Composing independent pseudodistributions). Suppose
Dx and Dy are degree d1 and d2 pseudodistributions in variables
x ∈ [q]n1 and y ∈ [q]n2 respectively. Let D = Dx ×Dy be a pseudodis-
tribution over (x, y) defined by ẼD [ f (x)g(y)] = ẼDx [ f (x)] ẼDy [ f (y)]
and linearly extending to any h(x, y) for polynomials f , g, h. Show
that ẼD is a degree min{d1, d2}-pseudodistribution.

16. Exercise (Projections of Pseudodistributions). Show that if D
is a degree d pseudodistribution over {0, 1}n then the distribution
corresponding to restricting x ∈ {0, 1}n to any subset of the n bits is
also a degree d pseudodistribution.

We now formally discuss the sos-Hardness for Max Independent
Set by Tulsiani [2009] .

17. Theorem (sos hardness for Independent Set). Fix any positive
integer r and k such that there’s a nice subspace predicate with at most 2k
satisfying assignments on {0, 1}k. For large enough n, there exist constant
c1, c2 > 0 and family on graphs G on N = 100nr(2k)r vertices such that:

• Every independent set in G is of size at most 200nr.
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• There exists a degree n/2Θ(k)-degree pseudodistribution D consistent
with the constraints {x2

i = xi} for every i ∈ [n], {xixj = 0} for every

{i, j} that is an edge in G and ẼD [∑n
i=1 xi] = 2Θ(r)

(
k
2k

)r
.

Consequently, by choosing r =
log (n)

log log (n) and k = Θ(log (n)), the

integrality gap of degree 2Θ(
√

log (N) log log (N)) sos algorithm for Max
Independent Set problem is at least N

2Θ(
√

log (N) log log N)
.

The classical proof of inapproximability of the independent set
problem involves constructing the well-known FGLSS graph. Let ψ

be an instance on n variables of Max-P problem with m constraints
where P is a k-variate nice-subspace predicate. Let G be the bipar-
tite graph of the instance ψ. Generate a new graph H with vertex
set given by (`, α) for every left vertex ` of G and every possible sat-
isfying assignment α in {0, 1}k for the `th constraint of ψ. Add an
edge between any two (`1, α1) and (`2, α2) of H if `1 and `2 share at
least one neighbor in G and α1 and α2 differ in the assignment to the
shared neighbor (in other words, if α1, α2 are conflicting partial as-
signments for the instance ψ). H is called as the FGLSS graph of the
Max-P instance ψ. The next exercise relates the size of independent
set in H to the maximum number of satisfiable constraints in ψ.

18. Exercise (Polynomial Feasibility Formulation of Independent
Set). Let H be a graph on vertex set [n]. Consider the following
polynomial feasibility formulation in variables x ∈ Rn: {x2

i − xi = 0}
for each i ∈ [n], {∑i≤n xi = q} and {xixj = 0} for every {i, j} that is
an edge in H. Verify that x is feasible for the program if and only if it
is the 0-1 indicator of a subset of vertices that forms an independent
set of size q in H.

19. Exercise (FGLSS Graph). Show that the maximum independent
set in the FGLSS graph H above is of size at most m. Further, if ψ

is satisfiable, show that H has an independent set of size m. Finally,
show that if there’s an independent set of size sm in H then, there’s
an assignment that satisfies at least s fraction of the constraints in ψ.

Let ψ be the sos hard instance of Max-P problem on n variables
and m constraints given by Tulsiani’s theorem. The above exercise
shows that the FGLSS graph of ψ has an independent set of size at
most sm for s ≈ 2k/2k.

The next exercise shows how to construct a pseudodistribution
that pretends that there’s a m-size independent set in the FGLSS
graph H of ψ using the exercise on porting low-degree reductions
above.
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20. Exercise (Pseudodistribution for FGLSS Graph). Let Ẽx be the
degree d pseudodistribution given by Tulsiani’s theorem for the
instance ψ of Max-P problem.

Use the exercise on porting low-degree reductions above to con-
clude that there’s a degree d/k pseudodistribution Ẽy consistent
with the constraints of the independent set polynomial feasibility
formulation for h above.

Next, consider H⊗r obtained by taking r-fold product of the graph
H (the vertices are r-tuples of vertices from H and with edges be-
tween any pair of r-tuples if one of the r constituent pairs have an
edge between them in H) obtained from ψ above.

The next exercise computes the size of the independent set in H⊗r.

21. Exercise (Soundness-of-product-instance). Suppose no assign-
ment satisfies more than s fraction of the constraints of ψ. Show that
there’s no independent set of size greater than srm in H⊗r.

Next, use the exercise on composing independent distributions to
conclude there’s a pseudodistribution of degree d/k that is consistent
with the independent set polynomial feasibility formulation in H⊗r.

What we have so far shows a degree d/k pseudodistribution with
an integrality gap of sr for the independent set problem on a graph
with (2k)rmr vertices. For r that is superconstant, the number of
vertices in this constructed graph are too large. Fortunately, we can
just sub-sample appropriate vertices from H⊗r and select a graph on
100nr vertices that has an independent set of size at most 2srm. It is
not hard to fill in the details for constructing a pseudodistribution for
this sub-sampled instance using the third tool above that deals with
projections of pseudodistributions.

Lower Bound for the Parity Problem

As an application of the general strategy for reductions within the
SoS framework, we show the following somewhat surprising lower
bound for the SoS algorithm.

The parity problem is simple: it asks for dividing a set of n objects
into two equal parts. When n is odd, this is obviously impossible.
However, we can show that the SoS algorithm “thinks” this is pos-
sible - that is, we will construct a pseudodistribution that pretends
to be supported on points x ∈ {0, 1}n such that ∑n

i=1 xi = n/2. This
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result was first shown by Grigoriev via a reduction from instances
of r-XOR problem traditionally referred to as Tseitin Tautologies in
algebraic proof complexity.

22. Theorem (Grigoriev’s Hardness for the Parity Problem). There
exists a pseudodistribution of degree Ω(n) that satisfies the constraints 1)
x2

i = xi for every i ∈ [n] 2) ∑n
i=1 xi = n/2 for any n large enough.

In particular, the above theorem shows the existence of an Ω(n)-
degree pseudodistribution even for odd n establishing the lower
bound for the parity problem.

The proof is via a reduction from the lower bound for a special
kind of XOR instance known in proof complexity literature as Tseitin
Tautology. The construction and proof is same as in the proof of Grig-
oriev’s theorem above - we describe it next. The idea for constructing
the instance is very simple. We start with an expander graph G on
vertex set [n]. The following existence of expander graphs is easy to
show (by analyzing the expansion of random d-regular graphs, for
example):

23. Lemma (good expanders exist). For every n large enough and even
d ≥ 4, there exist graphs d-regular graphs G such that for every S ⊆ [n],
|S| ≤ n/2, |Γ(S)| ≥ (1 + ε)|S| where Γ(S) is the set of vertices in [n]
adjacent to some vertex in S in G and ε > 0 is some fixed constant.

For each edge e in the graph G, we introduce a variable xe. The
graph G yields a d-XOR system with the constraints ∑e:e3i xe = 1
mod 2 for every i ∈ [n]. Notice that these are n equations over dn/2
variables. For any x, ∑i∈[n] ∑e:e3i xe = ∑e∈G 2xe = 0mod2. On the
other hand, if n is odd, then, ∑i∈[n] ∑e:e3i xe = ∑i∈[n] +1 = 1 mod 2.
Thus, if n is odd, there cannot exist an x satisying the given system
linear equations modulo 2. > Nevertheless, it is easy to construct
a pseudodistribution satisfying x2

e = xe and all the constraints in
the instance constructed above using a strategy similar to the one
employed in the proof of Grigoriev’s theorem above - we record this
in the lemma below.

24. Lemma (Grigoriev’s Hardness for Tseitin Tautology). Let G be
a (1 + ε)-expanding d-regular graph on [n] and ψ be the corresponding
d-XOR instance. Then, there’s a degree n/4 pseudodistribution satifying
x2

e = xe and all the constraints in ψ.

Let E(i) be the edges incident to vertex i in G. As before, we use
the χ-basis to specify the associated pseudoexpectation by the same
strategy as in the proof of Grigoriev’s theorem.
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For every set S ⊆ [n], |S| ≤ n/4, let Ẽ[χ∆i∈SE(i)] = (−1)|S|.

The following claim will be useful to show that the pseudoexpecta-
tion above is well-defined.

25. Lemma (small sets cannot cancel out). For every S ⊆ [n],
∆i∈SE(i) 6= ∅.

The proof is simple.

Proof. Observe that ∆i∈SE(i) = ∅ if and only if every edge e ∈ E(i)
appears twice in E(i). This can happen only if N(S) = S which is
impossible since |S| ≤ n/2 and G is (1 + ε)-expanding.

Proof of Lemma 24. To see why the above lemma implies that Ẽ above
is well-defined, observe that for any two sets S1, S2 ⊆ [n] of size at
most n/4 if ∆i∈S1 E(i) = ∆i∈S2 E(i), then, S1∆S2 is a set of size at most
n/2 and ∆i∈S1∆S2 E(i) = ∅ - such a set however cannot exist by the
Lemma above. Thus, the Ẽ defined above cannot give inconsistent
values.

The fact that Ẽ satisfies Ẽ[1] = 1 and all the constraints of the
instance corresponding to G are immediate from above. The proof of
PSDness of Ẽ is entirely analogous to the one in Grigoriev’s theorem
and we skip it here.

We now present the reduction from the Tseitin Tautology instance
on dn/2 variables corresponding to a d-regular graph to an instance
of the parity problem on m = 2dn + n variables. Observe that for odd
n, m is odd.

Proof of Theorem 22. Let G be the d-regular expander graph defining
the Tseitin Tautology instance above. For each undirected edge
{i, j} in the graph G, construct 4 variables yi,j,0, yi,j,1, yj,i,0, yj,i,1. In
addition, for every vertex i of G, we have a variable yi. We let IG

be the instance of the parity problem defined on y variables by
the constraints: y2

α = yα for every index α for the y variables and
∑α yα = (2dn + n)/2.

We will show the following:

26. Lemma (pseudodistribution-for-parity-problem). Suppose there
exists a degree t pseudodistribution for the Tseitin Tautology instance on
G. Then, there exists a degree t/d pseudodistribution for instance IG of the
parity problem.
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Proof. From Exercise ??, it is enough to show that for any x that sat-
isfies the constraints in the Tseitin Tautology instance corresponding
to G, there is a y such that every yα is a degree r function of x and y
satisfies the constraints of the parity problem instance IG.

We will construct an assignment to y variables such that for every
i, j, a, yi,j,a is a function of x{i,`} for {i, `} edges in G. Since there are d
edges incident to i in G, yi,j,a is a degree d function of x. We describe
this construction next.

If xi,j = 1 and i < j, let yi,j,1 = 1, yj,i,1 = 0 and yi,j,0 =

(−1)∑`∈Γ(i),`≤j x{i,j} . If xi,j = 0, let yi,j,0 = 0 and yi,j,1 = 1. Finally,
set yi = 1.

By construction, yα are functions of at most d values of x and
thus are at most degree d functions of x (being multilinear). To
verify that they satisfy the parity constraint we will partition yα into
groups of two such that in each group, the included yα have differing
assignments. This will complete the proof.

Let j1, j2, . . . , jk be the all the neighbors if i in G such that xi,j = 1
and jk+1, . . . , jd be the neighbors of i such that xi,j = 0. Notice that k
must be odd since ∑e:e3i xe = 1.

For every group yi,jt ,1 and yjt ,i,1 together for t ≤ k. Group yi,j2t−1,0

and yi,j2t ,0 for t < k/2. Group yi,k,0 and yi. It is easy to verify from
above that every group created has yαs of differing values.

The following simple exercise verifies that in fact the above re-
duction shows a lower bound of Ω(n)-degree for solving the perfect
matching problem.

27. Exercise (Lower Bound for Perfect Matching). Show that the pseu-
dodistribution constructed via reduction from the Tseitin Tautology
instance above in fact satisfies the constraints of being supported on a
perfect matching on n + 2dn vertex complete graph. Conclude a lower
bound of Ω(n)-degree for the SoS algorithm to detect that there’s no
perfect matching in an odd-vertex complete graph.
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